Skip to main content
Log in

Emission properties of InGaAs/GaAs heterostructures with quantum wells and dots after irradiation with neutrons

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effect of neutron radiation on the luminescence of InGaAs/GaAs heterostructures with quantum wells and quantum dots is studied. It is found that neutron radiation results both in the formation of defects and in the radiation-induced annealing of growth-related defects. Quantum dots are more stable to neutron radiation in comparison with quantum wells. It is shown that the layer of InGaAs/GaAs quantum dots located near the surface is less sensitive to irradiation with neutrons compared with a similar layer located in the bulk. In the first case, one can observe an increase in the photoluminescence and electroluminescence intensities after irradiation with neutrons, which is related to the effects of radiation-induced annealing. The pronounced effect of elastic strains in the InGaAs/GaAs quantum wells on the extent of quenching of the photoluminescence intensity upon irradiation with neutrons is revealed. In heterostructures with quantum wells, the effect of radiation-induced annealing manifests itself in a shift of the photoluminescence peak to longer wavelengths as a result of a decrease in elastic strains upon irradiation with neutrons. Doping of the GaAs buffer layer with silicon also reduces the value of this spectral shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. T. Grifin, M. S. Yazo, T. F. Guerd, and J. S. Kelly, IEEE Trans. Nucl. Sci. 36, 1937 (1989).

    Article  ADS  Google Scholar 

  2. W. Lu, Y. L. Ji, G. B. Chen, N. Y. Tang, X. S. Chen, S. C. Shen, Q. X. Zhao, and M. Willander, Appl. Phys. Lett. 83, 4300 (2003).

    Article  ADS  Google Scholar 

  3. N. A. Sobolev, A. Cavaco, M. C. Carmo, M. Grund- mann, F. Heinrichsdorff, and D. Bimberg, Phys. Status Solidi B 224, 93 (2001).

    Article  ADS  Google Scholar 

  4. R. Leon, G. M. Swift, B. Magness, W. A. Taylor, Y. S. Tang, K. L. Wang, P. Dowd, and Y.-H. Zhang, Appl. Phys. Lett. 76, 2074 (2000).

    Article  ADS  Google Scholar 

  5. B. N. Zvonkov, V. V. Podol’skii, V. P. Lesnikov, et al., Vysokochist. Veshchestva 4, 114 (1993).

    Google Scholar 

  6. A. V. Bobyl’, R. V. Kanakova, V. K. Kononov, V. G. Malinin, M. M. Malyshev, I. V. Prokopenko, M. I. Slutskii, and Yu. A. Tkhorik, Elektron. Tekh., Ser. Upravl. Kachestvom, Nos. 4–5, 31 (1992).

    Google Scholar 

  7. P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, J. Appl. Phys. 78, 2367 (1995).

    Article  ADS  Google Scholar 

  8. L. Fu, H. H. Tan, M. B. Johnston, M. Gal, and C. Jagadish, J. Appl. Phys. 85, 6786 (1999).

    Article  ADS  Google Scholar 

  9. G. P. Peka and O. A. Tokalin, Optoelektron. Poluprovodn. Tekh. 14, 1 (1988).

    ADS  Google Scholar 

  10. M. L. Dmitruk and R. V. Konakova, Vestn. Akad. Nauk USSR 6, 18 (1989).

    Google Scholar 

  11. I. A. Karpovich, A. V. Anshon, N. V. Baidus’, L. M. Batukova, Yu. A. Danilov, B. N. Zvonkov, and S. M. Plan- kina, Semiconductors 28, 63 (1994).

    ADS  Google Scholar 

  12. I. A. Karpovich, A. V. Anshon, and D. O. Filatov, Semiconductors 32, 975 (1998).

    Article  ADS  Google Scholar 

  13. K. D. Klinchuk and A. V. Prokhorovich, Semiconductors 31, 446 (1997).

    Article  Google Scholar 

  14. Problems of Radiation Technology of Semiconductors, Ed. by L. S. Smirnov (Nauka, Novosibirsk, 1980), p. 12 [in Russian].

    Google Scholar 

  15. D. I. Tetelbaum, D. V. Guseinov, V. K. Vasiliev, A. N. Mikhaylov, A. I. Belov, D. S. Korolev, S. V. Obolensky, and A. N. Kachemtsev, Nucl. Instrum. Methods Phys. Res. B 326, 41 (2014).

    Article  ADS  Google Scholar 

  16. R. Sreekumar, A. Mandal, S. K. Gupta, and S. Chakrabarti, Mater. Res. Bull. 46, 1786 (2011).

    Article  Google Scholar 

  17. A. Chahboun, M. I. Vasilevskiy, N. V. Baidus, A. Cavaco, N. A. Sobolev, M. C. Carmo, E. Alves, and B. N. Zvonkov, J. Appl. Phys. 103, 083548 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Vikhrova.

Additional information

Original Russian Text © N.V. Baidus, O.V. Vikhrova, B.N. Zvonkov, E.I. Malysheva, A.N. Trufanov, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 3, pp. 370–375.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baidus, N.V., Vikhrova, O.V., Zvonkov, B.N. et al. Emission properties of InGaAs/GaAs heterostructures with quantum wells and dots after irradiation with neutrons. Semiconductors 49, 358–363 (2015). https://doi.org/10.1134/S1063782615030057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615030057

Keywords

Navigation