Skip to main content
Log in

Decrease in the binding energy of donors in heavily doped GaN:Si layers

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The properties of Si-doped GaN layers grown by molecular-beam epitaxy from ammonia are studied by photoluminescence spectroscopy. It is shown that the low-temperature photoluminescence is due to the recombination of excitons bound to donors at Si-atom concentrations below 1019 cm−3. At a Si-atom concentration of 1.6 × 1019 cm−3, the band of free excitons is dominant in the photoluminescence spectrum; in more heavily doped layers, the interband recombination band is dominant. A reduction in the binding energy of exciton-donor complexes with increasing doping level is observed. With the use of Haynes rule, whereby the binding energy of the complex in GaN is 0.2 of the donor ionization energy E D , it is shown that E D decreases with increasing Si concentration. This effect is described by the dependence {ie1134-1}, where E otp D is the ionization energy of an individual Si atom in GaN. The coefficient that describes a decrease in the depth of the impurity-band edge with increasing Si concentration is found to be α = 8.4 × 10−6 meV cm−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, New York, 1997).

    Book  Google Scholar 

  2. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

    Article  ADS  Google Scholar 

  3. S. T. Whitaker, Comp. Semicond. 7, 50 (2001).

    Google Scholar 

  4. I. Akasaki and H. Amano, Jpn. J. Appl. Phys. 36, 5393 (1997).

    Article  ADS  Google Scholar 

  5. Y. Sato, N. Takahashi, and S. Sato, Jpn. J. Appl. Phys. 35, L838 (1996).

    Article  ADS  Google Scholar 

  6. F. Hide, P. Kozodoy, S. P. Denbaars, and A. J. Heeger, Appl. Phys. Lett. 70, 2664 (1997).

    Article  ADS  Google Scholar 

  7. M. A. Khan, V. Adivarahan, J. P. Zhang, C. Chen, E. Kuokatis, A. Chitnis, M. Shatalov, J. W. Yang, and G. Simin, Jpn. J. Appl. Phys. 40, L1308 (2001).

    Article  ADS  Google Scholar 

  8. G. MartÍnez-Criado, C. R. Miskys, A. Cros, O. Ambacher, A. Cantarero, and M. Stutzmann, J. Appl. Phys. 90, 5627 (2001).

    Article  ADS  Google Scholar 

  9. B. Meyer, Mater. Res. Soc. Symp. Proc. 449, 497 (1997).

    Article  Google Scholar 

  10. B. Monemar, J. Cryst. Growth 189–190, 1 (1998).

    Article  Google Scholar 

  11. In-Hwan Lee, In-Hoon Choi, C. R. Lee, and S. K. Noh, Appl. Phys. Lett. 71, 1359 (1997).

    Article  ADS  Google Scholar 

  12. Y. J. Wang, R. Kaplan, H. K. Ng, K. Doverspike, and D. K. Gaskill, J. Appl. Phys. 79, 8007 (1996).

    Article  ADS  Google Scholar 

  13. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, J. Appl. Phys. 86, 3721 (1999).

    Article  ADS  Google Scholar 

  14. L. C. Le, D. G. Zhao, D. S. Jiang, L. L. Wu, L. Li, P. Chen, Z. S. Liu, J. J. Zhu, H. Wang, S. M. Zhang, and H. Yang, J. Appl. Phys. 112, 053104 (2012).

    Article  ADS  Google Scholar 

  15. A. E. Wickenden, L. B. Rowland, K. Doverspike, D. K. Gaskill, J. A. Freitas, Jr., D. S. Simons, and P. H. Chi, J. Electron. Mater. 24, 1547 (1995).

    Article  ADS  Google Scholar 

  16. W. J. Moore, J. A. Freitas, S. K. Lee, S. S. Park, and J. Y. Han, Phys. Rev. B 65, R081201 (2002).

    ADS  Google Scholar 

  17. S. J. Xu, W. Liu, and M. F. Li, Appl. Phys. Lett. 81, 2959 (2002).

    Article  ADS  Google Scholar 

  18. J. Jayapalan, B. J. Skromme, R. P. Vaudo, and V. M. Phanse, Appl. Phys. Lett. 73, 1188 (1998).

    Article  ADS  Google Scholar 

  19. J. Neugebauer and C. G. van de Walle, in Proceedings of the 22nd International Conference on the Physics of Semiconductors (World Scientific, Singapore, 1995), p. 2327.

    Google Scholar 

  20. W. Seifert, R. Franzheld, E. Butter, H. Sobotta, and V. Riede, Cryst. Res. Technol. 18, 383 (1983).

    Article  Google Scholar 

  21. W. Götz, R. S. Kern, C. H. Chen, H. Liu, D. A. Steigerwald, and R. M. Fletcher, Mater. Sci. Eng. B 59, 211 (1999).

    Article  Google Scholar 

  22. W. Götz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, Appl. Phys. Lett. 68, 3144 (1996).

    Article  ADS  Google Scholar 

  23. W. Götz, J. Walker, L. T. Romano, and N. M. Johnson, Mater. Res. Soc. Symp. Proc. 449, 525 (1997).

    Article  Google Scholar 

  24. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, New York, 1984; Moscow, Nauka, 1979).

    Book  Google Scholar 

  25. A. P. Levanyuk and V. V. Osipov, Sov. Phys. Usp. 24, 187 (1981).

    Article  ADS  Google Scholar 

  26. N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).

    Article  ADS  Google Scholar 

  27. A. Ferreira da Silva and C. Persson, J. Appl. Phys. 92, 2550 (2002).

    Article  ADS  Google Scholar 

  28. B. K. Meyer, D. Volm, A. Graber, H. C. Alt, T. Detchprohm, A. Amano, and I. Akasaki, Solid State Commun. 95, 597 (1995).

    Article  ADS  Google Scholar 

  29. G. R. James, A. W. R. Leitch, M. C. Wagener, and F. Omnes, Physica B 340, 426 (2003).

    Article  ADS  Google Scholar 

  30. K. Zhu, M. L. Nakarmi, K. H. Kim, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 85, 15 (2004).

    Google Scholar 

  31. K. Forghani, Annual Report, No. 47 (Inst. of Optoelectronics, Ulm University, 2010).

    Google Scholar 

  32. B. Monemar, J. P. Bergman, I. A. Buyanova, W. Li, H. Amano, and I. Akasaki, MRS Internet J. Nitride Semicond. Res. 1, 2 (1996).

    Google Scholar 

  33. S. W. Lee, Jun-Seok Ha, Hyun-Jae Lee, Hyo-Jong Lee, H. Goto, T. Hanada, T. Goto, Katsushi Fujii, M. W. Cho, and T. Yao, Appl. Phys. Lett. 94, 082105 (2009).

    Article  ADS  Google Scholar 

  34. D. Volm, K. Oettinger, T. Streibl, D. Kovalev, M. Ben-Chorin, J. Diener, B. K. Meyer, J. Majewski, L. Eckey, A. Hoffmann, H. Amano, I. Akasaki, K. Hiramatsu, and T. Detchprohm, Phys. Rev. B 53, 16543 (1996).

    Article  ADS  Google Scholar 

  35. V. Kirilyuk, A. R. A. Zauner, P. C. M. Christianen, J. L. Weyher, P. R. Hageman, and P. K. Larsen, Appl. Phys. Lett. 76, 2355 (2000).

    Article  ADS  Google Scholar 

  36. H. Y. An, O. H. Cha, J. H. Kim, G. M. Yang, K. Y. Lim, E.-K. Suh, and H. J. Lee, J. Appl. Phys. 85, 2888 (1999).

    Article  ADS  Google Scholar 

  37. O. Brandt, J. Ringling, K. H. Ploog, H. J. Wunsche, and F. Henneberger, Phys. Rev. B 58, 15977 (1998).

    Article  ADS  Google Scholar 

  38. M. Smith, G. D. Chen, J. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, W. K. Kim, O. Aktas, A. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 67, 3387 (1995).

    Article  ADS  Google Scholar 

  39. R. A. Mair, J. Li, S. K. Duan, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 74, 513 (1999).

    Article  ADS  Google Scholar 

  40. A. S. Zubpilov, Yu. V. Melnik, A. E. Nikolaev, M. A. Yakobson, D. K. Nelson, and V. A. Dmitriev, Semiconductors 33, 1067 (1999).

    Article  ADS  Google Scholar 

  41. J. R. Haynes, Phys. Rev. Lett. 4, 351 (1960).

    Article  ADS  Google Scholar 

  42. J. Flohrer, E. Jahne, and M. Porsch, Phys. Status Solidi 91, 467 (1979).

    Article  Google Scholar 

  43. R. E. Halstedt and M. Aven, Phys. Rev. Lett. 14, 64 (1965).

    Article  ADS  Google Scholar 

  44. S. L. Chuang and C. S. Chang, Phys. Rev. B 54, 2491 (1996).

    Article  ADS  Google Scholar 

  45. V. V. Ratnikov, R. N. Kyutt, A. N. Smirnov, V. Yu. Davydov, M. P. Shcheglov, T. V. Malin, and K. S. Zhuravlev, Crystallogr. Rep. 58, 1023 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Osinnykh.

Additional information

Original Russian Text © I.V. Osinnykh, K.S. Zhuravlev, T.V. Malin, B.Ya. Ber, D.Yu. Kazantsev, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 9, pp. 1164–1168.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osinnykh, I.V., Zhuravlev, K.S., Malin, T.V. et al. Decrease in the binding energy of donors in heavily doped GaN:Si layers. Semiconductors 48, 1134–1138 (2014). https://doi.org/10.1134/S1063782614090176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614090176

Keywords

Navigation