Skip to main content
Log in

Quantitative calibration and germanium SIMS depth profiling in Ge x Si1 − x /Si heterostructures

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Methods for minimizing nonlinear matrix effects in the quantitative determination of germanium concentrations in Ge x Si1 − x layers by secondary ion mass spectrometry are discussed. The analysis conditions with positive SiCs+, GeCs+ and negative Ge, Si secondary ions produced during sputtering by cesium ions are used in the TOF.SIMS-5 setup with a time-of-flight mass analyzer. In contrast to published works for TOF.SIMS setups, the linear dependence of the ion-concentration ratio Ge/Si on x/(1 − x) is shown. Two new linear calibrations for the germanium concentration as a function of the cluster Ge 2 secondary ion yield are proposed. The calibration factors are determined for all linear calibrations at various energies of sputtered cesium ions and Bi+ and probe Bi +3 ions. It is shown for the first time that the best depth resolution among the possible conditions of quantitative germanium depth profiling in Ge x Si1 − x /Si multilayer heterostructures is provided by the calibration mode using elemental Ge and Si negative secondary ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. G. Wilson, Int. J. Mass Spectrom. Ion Processes 143, 43 (1995).

    Article  ADS  Google Scholar 

  2. Y. Gao, J. Appl. Phys. 67, 3760 (1988).

    Article  ADS  Google Scholar 

  3. B. Gautier, J. C. Dupuy, C. Dubois, M. Bonneau, J. Delmas, J. P. Vallard, G. Bremond, and R. Brenier, Thin Solid Films 294, 54 (1997).

    Article  Google Scholar 

  4. B. Saha and P. Chakraborty, Nucl. Instrum. Methods Phys. Res. B 258, 218 (2007).

    Article  ADS  Google Scholar 

  5. G. Dong, C. Liangzhen, L. Rong, and A. T. S. Wee, Surf. Interface Anal. 32, 171 (2001).

    Article  Google Scholar 

  6. F. Sanchez-Almazan, E. Napolitani, A. Carnera, A. V. Drigo, G. Izella, H. von Kanel, and M. Berti, Appl. Surf. Sci. 231–232, 704 (2004).

    Article  Google Scholar 

  7. M. Junel and F. Laugier, Appl. Surf. Sci. 231–232, 698 (2004).

    Google Scholar 

  8. M. Gavelle, E. Scheid, F. Cristiano, C. Armand, J.-M. Hartmann, Y. Campidelli, A. Halimaoui, P.-F. Fazzini, and O. Marcelot, J. Appl. Phys. 102, 074904 (2007).

    Article  ADS  Google Scholar 

  9. R. Pureti and W. Vandervorst, Surf. Interface Anal. 45, 402 (2013).

    Article  Google Scholar 

  10. G. Prudon, C. Dubois, B. Gautier, J. C. Dupuy, J. P. Graf, Y. LeGall, and D. Muller, Surf. Interface Anal. 45, 376 (2013).

    Article  Google Scholar 

  11. K. J. Kim, J. S. Jang, D. W. Moon, and H. J. Kang, Metrologia 47, 253 (2010).

    Article  ADS  Google Scholar 

  12. D. Marseilhan, J. P. Barnes, F. Fillot, J. M. Hartmann, and P. Holliger, Appl. Surf. Sci. 255, 1412 (2008).

    Article  ADS  Google Scholar 

  13. M. Py, J. P. Barnes, and J. M. Hartmann, Surf. Interface Anal. 43, 539 (2011).

    Article  Google Scholar 

  14. S. Ferrari, M. Perego, and M. Fanciulli, Appl. Surf. Sci. 203–204, 52 (2003).

    Article  Google Scholar 

  15. M. Perego, S. Ferrari, and M. Fanciulli, Surf. Sci. 599, 141 (2005).

    Article  ADS  Google Scholar 

  16. M. Py, J. P. Barnes, D. Lafond, and J. M. Hartmann, Rapid Commun. Mass Spectrom. 25, 629 (2011).

    Article  Google Scholar 

  17. M. N. Drozdov, Yu. N. Drozdov, D. N. Lobanov, A. V. Novikov, and D. V. Yurasov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 591 (2011).

    Article  Google Scholar 

  18. M. N. Drozdov, Yu. N. Drozdov, D. N. Lobanov, A. V. Novikov, and D. V. Yurasov, Semiconductors 44, 401 (2010).

    Article  ADS  Google Scholar 

  19. S. Hofmann, Rep. Progr. Phys. 61, 827 (1998).

    Article  ADS  Google Scholar 

  20. J. Y. Wang, Y. Liu, S. Hofmann, and J. Kovac, Surf. Interface Anal. 44, 569 (2012).

    Article  Google Scholar 

  21. P. A. Yunin, Yu. N. Drozdov, and M. N. Drozdov, Surf. Interface Anal. 45, 1228 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Drozdov.

Additional information

Original Russian Text © M.N. Drozdov, Yu.N. Drozdov, A.V. Novikov, P.A. Yunin, D.V. Yurasov, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 8, pp. 1138–1146.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, M.N., Drozdov, Y.N., Novikov, A.V. et al. Quantitative calibration and germanium SIMS depth profiling in Ge x Si1 − x /Si heterostructures. Semiconductors 48, 1109–1117 (2014). https://doi.org/10.1134/S1063782614080090

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614080090

Keywords

Navigation