Skip to main content
Log in

On the Possibility of Dust Acoustic Perturbations in Martian Ionosphere

  • DUSTY PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

It is shown that the horizontal winds in Martian ionosphere, at the initial stage of their interaction with dusty plasma clouds at altitudes of about 100 km, can cause conditions for the excitation of dust acoustic waves due to the development of kinetic instability. The dispersion relationship of the dust acoustic waves is determined as well as their growth rate in the conditions under study. It is noted that the generation time of the dust acoustic wave is substantially long to allow the formation of nonlinear plasma wave structures, e.g., solitons. Dust acoustic solitons that propagate in Martian ionosphere in the dusty plasma clouds at altitudes of about 100 km are studied. It is shown that the increase in dust particle number density or decrease in electron number density by one order of magnitude leads to the increase of the amplitude of dust acoustic solitons by one order of magnitude. The possibility of generation of dust acoustic perturbations in Martian ionosphere should be taken into account during processing and interpretation of observation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  2. V. N. Tsytovich, G. E. Morfill, S. V. Vladimirov, and H. M. Thomas, Elementary Physics of Complex Plasmas (Springer, Berlin, 2008).

    Book  Google Scholar 

  3. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Rep. 421, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. I. Popel, S. I. Kopnin, M. Y. Yu, J. X. Ma, and F. Huang, J. Phys. D: Appl. Phys. 44, 174036 (2011).

  5. P. Withers, Adv. Space Res. 44, 027 (2009).

  6. P. Withers, M. O. Fillingim, R. J. Lillis, B. Häusler, D. P. Hinson, G. L. Tyler, M. Pätzold, K. Peter, S. Tellmann, and O. Witasse, J. Geophys. Res. 117, A12307 (2012).

  7. M. Pätzold, S. Tellmann, B. Häusler, D. Hinson, R. Schaa, and G. L. Tyler, Science 310, 837 (2005).

    Article  ADS  Google Scholar 

  8. F. Montmessin, J. L. Bertaux, E. Quémerais, O. Korablev, P. Rannou, F. Forget, S. Perriera, D. Fussend, S. Lebonnoisc, and A. Rébéraca, Icarus 183, 403 (2006).

    Article  ADS  Google Scholar 

  9. F. Montmessin, B. Gondet, J. P. Bibring, Y. Langevin, P. Drossart, F. Forget, and T. Fouchet, J. Geophys. Res. 112, 90 (2007).

    Google Scholar 

  10. B. A. Klumov, G. E. Morfill, and S. I. Popel, J. Exp. Theor. Phys. 100, 152 (2005).

    Article  ADS  Google Scholar 

  11. A. Yu. Dubinskii, Yu. S. Reznichenko, and S. I. Popel, Plasma Phys. Rep. 45, 928 (2019).

    Article  ADS  Google Scholar 

  12. S. W. Bougher, S. Engel, R. G. Roble, and B. Foster, J. Geophys. Res. 104, 16591 (1999).

    Article  ADS  Google Scholar 

  13. S. I. Popel and T. I. Morozova, Plasma Phys. Rep. 43, 566 (2017).

    Article  ADS  Google Scholar 

  14. F. Forget, F. Montmessin, J. L. Bertaux, F. González-Galindo, S. Lebonnois, E. Quémerais, A. Reberac, E. Dimarellis, and M. A. López-Valverde, J. Geophys. Res. 114, E01004 (2009).

  15. O. Buneman, Phys. Rev. 115, 603 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  16. V. E. Fortov, A. G. Khrapak, and I. T. Yakubov, Physics of Nonideal Plasma (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  17. V. Yu. Trakhtengerts, Dokl. Akad. Nauk SSSR 308, 584 (1989).

    Google Scholar 

  18. V. S. Grach, Radiophys. Quantum Electron. 56, 355 (2013).

    Article  ADS  Google Scholar 

  19. V. S. Grach, Radiophys. Quantum Electron. 56, 422 (2013).

    Article  ADS  Google Scholar 

  20. A. Yu. Dubinskii and S. I. Popel, JETP Lett. 96, 21 (2012).

    Article  ADS  Google Scholar 

  21. J. Srinivas, S. I. Popel, and P. K. Shukla, J. Plasma Phys. 55, 209 (1996).

    Article  ADS  Google Scholar 

  22. T. V. Losseva, S. I. Popel, and A. P. Golub’, Plasma Phys. Rep. 38, 729 (2012).

    Article  ADS  Google Scholar 

  23. S. I. Kopnin and S. I. Popel, Tech. Phys. Lett. 45, 1035 (2019).

    Article  ADS  Google Scholar 

  24. S. I. Popel, S. I. Kopnin, I. N. Kosarev, and M. Y. Yu, Adv. Space Res. 37, 414 (2006).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Russian Foundation for Basic Research, project no. 18-02-00341-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Popel.

Additional information

Translated by E. Voronova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izvekova, Y.N., Reznichenko, Y.S. & Popel, S.I. On the Possibility of Dust Acoustic Perturbations in Martian Ionosphere. Plasma Phys. Rep. 46, 1205–1209 (2020). https://doi.org/10.1134/S1063780X2012003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2012003X

Keywords:

Navigation