Skip to main content
Log in

Electron-Acoustic Shock Waves in Cylindrical and Spherical Geometry with Non-Extensive Electrons

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

We consider nonplanar electron acoustic shock waves composed of stationary ions, cold and non-extensive hot electrons under multiple temperature electrons model in unmagnetized plasma. In this model Modified Korteweg-de Vries–Burger (KdVB) equation is obtained in the cylindrical/spherical coordinates. On the basis of the solutions of KdVB equation, the variation of shock waves features (amplitude, velocity, and width) with different plasma parameters are analyzed. Dissipation effect is introduced in the model by means of kinematic viscosity term. KdVB equation always leads to monotonic solitons and no oscillatory part or peak may appear. It is observed that the combined effect of particle density \((\alpha )\), nonextensivity parameter q, electron temperature ratio \((\theta )\), and kinetic viscosity \(({{\eta }_{0}})\) significantly changes the properties of shock waves in nonplanar geometry especially in spherical coordinates. Results could be helpful to analyze the soliton features in laboratory and in the space environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Watanabe and T. Taniuti, J. Phys. Soc. Jpn. 43, 1819 (1977).

    Article  ADS  Google Scholar 

  2. M. Y. Yu and P. K. Shukla, Phys. Plasmas 29, 1409 (1983).

    Google Scholar 

  3. R. L. Tokar and S. P. Gary, Geophys. Res. Lett. 11, 1180 (1984).

    Article  ADS  Google Scholar 

  4. S. P. Gary and R. L. Tokar, Phys. Fluids 28, 2439 (1985).

    Article  ADS  Google Scholar 

  5. R. L. Mace and M. A. Helberg, Phys. Plasmas 43, 239 (1990).

    Article  Google Scholar 

  6. N. Dubouloz, R. Pottelete, M. Malingre, and R. A. Treumann, Geophys. Res. Lett. 18, 155 (1991).

    Article  ADS  Google Scholar 

  7. N. Dubouloz, R. A. Treumann, R. Pottelete, and M. Malingre, Geophys. Res. Lett. 98, 17 (1993).

    Article  Google Scholar 

  8. R. Pottelette, R. E. Ergun, R. A. Treumann, M. Berthomier, C. W. Carlson, J. P. McFadden, and I. Roth, Geophys. Res. Lett. 26, 2629 (1999).

    Article  ADS  Google Scholar 

  9. M. Berthomier, R. Pottelete, M. Malingre, and Y. Khotyaintsev, Phys. Plasmas 7, 2987 (2000).

    Article  ADS  Google Scholar 

  10. A. A. Mamun and P. K. Shukla, Geophys. Res. Lett. 107, 1135 (2002).

    Article  Google Scholar 

  11. T. S. Gill, H. Kaur, and N. S. Saini, Chaos Solitons Fract. 30, 1020 (2006).

    Article  ADS  Google Scholar 

  12. T. S. Gill, H. Kaur, S. Bansal, N. S. Saini, and P. Bala, Eur. Phys. J. D 41, 151 (2007).

    Article  ADS  Google Scholar 

  13. M. F. Thomsen, H. C. Barr, S. P. Gary, W. C. Feldman, and T. E. Cole, Geophys. Res. Lett. 88, 11 (1983).

    Google Scholar 

  14. W. C. Feldman, R. C. Anderson, S. J. Bame, S. P. Gary, J. T. Gosling, D. J. Mc Comas, M. F. Thomsen, G. Paschmann, and M. M. Hoppe, Geophys. Res. Lett. 88, 15 (1983).

    Google Scholar 

  15. S. D. Bale, P. J. Kellogg, D. E. Larson, R. P. Lin, K. Goetz, and R. P. Lepping, Geophys. Res. Lett. 25, 2929 (1983).

    Article  ADS  Google Scholar 

  16. A. Renyi, Acta Math. Hungar. 6, 285 (1995).

    Article  Google Scholar 

  17. C. Tsallis, J. Stat. Phys. 52, 479 (1988).

    Article  ADS  Google Scholar 

  18. B. Sahu and M. Tribeche, Phys. Plasmas 19, 022304 (2012).

    Article  ADS  Google Scholar 

  19. E. K. EL-Shewy, Astrophys. Space Sci. 335, 387 (2011).

  20. A. Bains, M. Tribeche, and T. S. Gill, Phys. Lett. A 20, 375 (2011).

    Google Scholar 

  21. H.R. Pakzad, Astrophys. Space Sci. 337, 217 (2012).

    Article  ADS  Google Scholar 

  22. M. Tribeche and R. Sabry, Astrophys. Space Sci. 341, 579 (2012).

    Article  ADS  Google Scholar 

  23. M. Berthomier, R. Pottelete, and L. Stenflo, Phys. Plasmas 9, 1474 (2002).

    Article  MathSciNet  Google Scholar 

  24. H. R. Pakzad, Phys. Scr. 83, 4 (2011).

    Google Scholar 

  25. M. Tribeche and L. Djebarni, Phys. Plasmas 17, 12450 (2010).

    Google Scholar 

  26. A. Danekhar, N. S. Saini, M. A. Helberg, and I. Kourakis, Phys. Plasmas 18, 072902 (2011).

    Article  ADS  Google Scholar 

  27. R. Amour, M. Tribeche, and P. K. Shukla, Astrophys. Space Sci. 344, 161 (2012).

    Google Scholar 

  28. H. R. Pakzad and M. Tribeche, Astrophys. Space Sci. 330, 95 (2010).

    Article  ADS  Google Scholar 

  29. S. S. Duha and A. A. Mamun, Phys. Let. A 373, 1287 (2009).

    Article  ADS  Google Scholar 

  30. S. Yasmin, M. Asaduzzaman, and A. A. Mamun, Astrophys. Space Sci. 345, 291 (2013).

    Article  Google Scholar 

  31. M. G. Hafez, M. R. Talukder, M. H. Ali, Plasma Phys. Rep. 43, 499 (2017).

    Article  ADS  Google Scholar 

  32. S. Bansal, M. Aggarwal, and T. S. Gill, Braz. J. Phys. 48, 638 (2018).

    Article  ADS  Google Scholar 

  33. S. Bansal, M. Aggarwal, and T. S. Gill, Plasma Sci. Tech. 21, 015301 (2018).

    Google Scholar 

  34. M. Geladin, Phys. Plasmas 1, 1159 (1994).

    Article  ADS  Google Scholar 

  35. N. C. Lee, Phys. Plasmas 16, 042316 (2009).

    Article  ADS  Google Scholar 

  36. M. Dutta, N. Chakrabarti, R. Roychoudhury, and M. Khan, Phys. Plasmas 18, 102301 (2011).

    Article  ADS  Google Scholar 

  37. S. Sultana and I. Kourakis, Eur. Phys. J. D 66, 100 (2012).

    Article  ADS  Google Scholar 

  38. H. G. Abdelwahed and E. K. El-Shewy, Commun. Theor. Phys. 60, 445 (2013).

    Article  ADS  Google Scholar 

  39. S. Maxon and J. Viecelli, Phys. Rev. Lett. 32, 4 (1984).

    Article  ADS  Google Scholar 

  40. J. K. Xue, Phys. Plasmas 10, 3430 (2003).

    Article  ADS  Google Scholar 

  41. B. Sahu and R. Roychoudhury, Phys. Plasmas 10, 4162 (2009).

    Article  ADS  Google Scholar 

  42. A. A. Mamun and P. K. Shukla, Phys. Rev. E 80, 07401 (2009).

    ADS  Google Scholar 

  43. W. Massod, N. Imtiaz, and M. Siddiq, Phys. Scr. 80, 015501 (2009).

    Article  ADS  Google Scholar 

  44. K. Javidan and H. R. Pakzad, Indian J. Phys. 87, 83 (2012).

    Article  ADS  Google Scholar 

  45. R. Sabry, S. K. El-Labany, and P. K. Shukla, Phys. Plasmas 15, 122310 (2008).

    Article  ADS  Google Scholar 

  46. B. Sahu and M. Tribeche, Phys. Plasmas 19, 022304 (2012).

    Article  ADS  Google Scholar 

  47. S. Bansal, M. Aggarwal, and T. S. Gill, J. Astrophys. Astron. 39, 27 (2018).

    Article  ADS  Google Scholar 

  48. M. Y. Yu, and H. Luo, Phys. Plasmas 15, 024504 (2008).

    Article  ADS  Google Scholar 

  49. F. Verheest and M. A. Hellberg, Phys. Plasmas 21, 022307 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Sona Bansal and Munish Aggarwal are thankful to Punjab Technical University, Kapurthala (India) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bansal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, S., Aggarwal, M. Electron-Acoustic Shock Waves in Cylindrical and Spherical Geometry with Non-Extensive Electrons. Plasma Phys. Rep. 45, 991–996 (2019). https://doi.org/10.1134/S1063780X19110011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19110011

Navigation