Skip to main content
Log in

Analysis of the Transition Time between the Space-Charge-Limited and Inverse Regimes

  • PLASMA−WALL INTERACTION
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Accumulation of cold ions trapped within a space-charge-limited sheath collapses the sheath, causing a transition to the inverse sheath mode. A driving mechanism creating trapped ions is charge-exchange collisions which occur between fast ions and cold neutrals. Due to the complex nature of the temporally evolving sheath, it is difficult to predict how long the transition takes. Depending on the properties of the plasma, emitted electrons, and neutrals, the time scale can range from microseconds to hours. For experimental situations, it is important to understand whether the sheath will transition to an inverse mode within the observation time allotted. In this paper, we establish a theoretical basis for defining transition time of the sheath in terms of plasma properties. Calculations include an analytical approximation for the length of the virtual cathode, the amount of charged particles in each layer of the space-charge-limited sheath, and a time for its transition to the inverse sheath. The theoretical model is then compared to 1D kinetic simulations of a space-charge-limited sheath with charge-exchange collisions present. The results are applied to estimate transition time scales for applications in laboratory plasma experiments, the lunar sheath, and tokamaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. The actual distribution is correctly evaluated as a half Fermi–Dirac distribution [30]; however, this will not affect the structure of our solution.

REFERENCES

  1. L. Tonks and I. Langmuir, Phys. Rev. 34, 876 (1929).

    Article  ADS  Google Scholar 

  2. G. D. Hobbs and J. A. Wesson, Plasma Phys. 9, 85 (1967).

    Article  ADS  Google Scholar 

  3. F. Taccogna, Europhys. J. 68, 7 (2014).

    Google Scholar 

  4. R. T. Farouki, S. Hamaguchi, and M. Dalvie, Phys. Rev. A 44, 2664 (1991).

    Article  ADS  Google Scholar 

  5. J. P. Sheehan, Ph.D. Dissertation (University of Wisconsin, Madison, 2012).

  6. J. P. Sheehan, N. Hershkowitz, I. D. Kaganovich, H. Wang, Y. Raitses, E. V. Barnat, B. R. Weatherford, and D. Sydorenko, Phys. Rev. Lett. 111, 075002 (2013).

    Article  ADS  Google Scholar 

  7. D. Sydorenko, I. Kaganovich, Y. Raitses, and A. Smolyakov, Phys. Rev. 103, 145004 (2009).

    Google Scholar 

  8. A. I. Morozov and V. V. Savel’ev, Plasma Phys. Rep. 30, 299 (2004).

    Article  ADS  Google Scholar 

  9. A. I. Morozov and V. V. Savel’ev, Plasma Phys. Rep. 33, 20 (2007).

    Article  ADS  Google Scholar 

  10. M. D. Campanell and M. V. Umansky, Phys. Plasmas 24, 057101 (2017).

    Article  ADS  Google Scholar 

  11. X. Wang, J. Pilewskie, H.-W. Hsu, and M. Horányi, Geophys. Res. Lett. 43, 525 (2016).

    Article  ADS  Google Scholar 

  12. M. D. Campanell, Phys. Rev. E 97, 043207 (2018).

    Article  ADS  Google Scholar 

  13. P. C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (IOP, Bristol, 2000).

    Book  Google Scholar 

  14. M. D. Campanell, Phys. Rev. E 88, 033103 (2013).

    Article  ADS  Google Scholar 

  15. A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (CRC Press, Boca Raton, FL, 2003).

    MATH  Google Scholar 

  16. P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).

    Article  ADS  Google Scholar 

  17. F. Greiner, T. Klinger, and A. Piel, Phys. Plasmas 2, 1810 (1995).

    Article  ADS  Google Scholar 

  18. T. Klinger, F. Greiner, A. Rohde, and A. Piel, Phys. Plasmas 2, 1822 (1995).

    Article  ADS  Google Scholar 

  19. M. D. Campanell and M. V. Umansky, Plasma Sources Sci. Technol. 26, 124002 (2017).

    Article  ADS  Google Scholar 

  20. C. Yip, N. Hershkowitz, G. Severn, and S. D. Baalrud, Phys. Plasmas 23, 050703 (2016).

    Article  ADS  Google Scholar 

  21. A. J. Dessler, Rev. Geophys. 5 (1), 1 (1967).

    Article  ADS  Google Scholar 

  22. W. M. Farrell, A. R. Poppe, M. I. Zimmerman, J. S. Halekas, G. T. Delory, and R. M. Killen, J. Geophys. Res. 118, 1114 (2013).

    Article  Google Scholar 

  23. J. H. Hoffman, Report NASA-CR-150946 (Texas Univ. at Dallas, Richardson, TX, 1975).

  24. M. Benna, P. R. Mahaffy, J. S. Halekas, R. C. Elphic, and G. T. Delory, Geophys. Res. Lett. 42, 3723 (2015).

    Article  ADS  Google Scholar 

  25. R. R. Hodges, Jr., J. Geophys. Res. 78, 8055 (1973).

    Article  ADS  Google Scholar 

  26. S. A. Stern, Rev. Geophys. 37, 453 (1999).

    Article  ADS  Google Scholar 

  27. R. Schwenn, Encyclopedia of Astronomy and Astrophysics (IOP, Bristol, 2000).

    Google Scholar 

  28. W. L. Fite, R. T. Brackmann, and W. R. Snow, Phys. Rev. 112, 1161 (1958).

    Article  ADS  Google Scholar 

  29. J. A. Newbury, Eos 77, 471 (1996).

    Article  ADS  Google Scholar 

  30. M. S. Sodha and S. K. Mishra, Phys. Plasmas 21, 093704 (2014).

    Article  ADS  Google Scholar 

  31. J. A. Wesson, The Science of JET (JET Joint Undertaking, Abingdon, 1999), p. 56.

    Google Scholar 

  32. G. Z. Hao, W. W. Heidbrink, D. Liu, M. Podesta, L. Stagner, R. E. Bell, A. Bortolon, and F Scotti, Plasma Phys. Controlled Fusion 60, 025026 (2018).

    Article  ADS  Google Scholar 

  33. N. G. Bolte, W. W. Heidbrink, D. Pace, M. V. Zeeland, and X. Che, Nucl. Fusion 56, 112023 (2016).

    Article  ADS  Google Scholar 

  34. W. W. Dolan and W. P. Dyke, Phys. Rev. 95, 327 (1954).

    Article  ADS  Google Scholar 

  35. M. E. Woods, B. J. Hopkins, G. F. Matthews, G. M. McCracken, P. M. Sewell, and H. Fahrang, J. Phys. D 20, 1136 (1987).

    Article  ADS  Google Scholar 

  36. W. B. Nottingham, Phys. Rev. 49, 78 (1936).

    Article  ADS  Google Scholar 

  37. E. W. Thomas and W. M. Stacey, Phys. Plasmas 4, 678 (1997).

    Article  ADS  Google Scholar 

  38. O. Biblarz, R. C. Dolson, and A. M. Shorb, J. Appl. Phys. 46, 3342 (1975).

    Article  ADS  Google Scholar 

  39. H. B. Garrett, Rev. Geophys. 19, 577 (1981).

    Article  ADS  Google Scholar 

  40. B. F. Kraus and Y. Raitses, Phys. Plasmas 25, 030701 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract no. DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Johnson.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, G.R., Campanell, M.D. Analysis of the Transition Time between the Space-Charge-Limited and Inverse Regimes. Plasma Phys. Rep. 45, 69–85 (2019). https://doi.org/10.1134/S1063780X19010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X19010033

Navigation