Skip to main content
Log in

Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

  • Plasma Diagnostics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 104 tracks/cm2 was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Mather, Phys Fluid. 8, 2 (1965).

    Article  Google Scholar 

  2. N. V. Filippov, T. I. Filippova, and V. P. Vinogradov, Nucl. Fusion, Suppl. 2, 577, 587 (1962).

    Google Scholar 

  3. M. G. Haines, Philos. Trans. R. Soc. London A 300 1456 (1981).

  4. V. I. Krauz, Plasma Phys. Controlled Fusion 48, B221 (2006).

    Article  Google Scholar 

  5. M. Sadowski, Plasma Phys. Controlled Fusion 30, 6 (1970).

    Google Scholar 

  6. S. Lee and S. H. Saw, Phys. Plasmas 19, 112703 (2012).

    Article  ADS  Google Scholar 

  7. M. Sohrabi, M. Habibi, and V. Ramezani, Phys. Lett. A 378, 3631 (2014).

    Article  ADS  Google Scholar 

  8. M. Sohrabi, US Patent No. 4157473, Atlanta, Georgia, 1979.

  9. M. Sohrabi, M. Habibi, and V. Ramezani, Radiat. Meas. 67, 59 (2014).

    Article  Google Scholar 

  10. M. Sohrabi, M. Habibi, G. H. Roshani, and V. Ramezani, Rad. Measur. 47, 530 (2012).

    Article  Google Scholar 

  11. R. L. Fleischer, P. B. Price, and R. M. Walker, Nuclear Tracks in Solids: Principles and Applications (University of California Press, Berkeley, Calif., 1975).

    Google Scholar 

  12. L. Tommasino and C. Armellini, Radiat. Effects 20, 253 (1973).

    Article  Google Scholar 

  13. M. Sohrabi and K. Z. Morgan, Am. Indust. Hygiene Assoc. J. 39, 438 (1978).

    Article  Google Scholar 

  14. M. Sohrabi, Health Phys. 27, 598 (1974).

    Google Scholar 

  15. M. Habibi, R. Amrollahi, M. Attaran, and R. Etaati, Plasma Dev. Operat. 16, 163 (2008).

    Article  Google Scholar 

  16. R. Baghdadi, R. Amrollahi, M. Habibi, and G. R. Etaati, J. Fusion Energy 30, 72 (2011).

    Article  ADS  Google Scholar 

  17. M. Sadowski, E. S. Sadowska, J. Baranowski, J. Zebrowski, H. Kelly, A. Lepone, A. Marquez, M. Milanese, R. Moroso, and J. Pouzo, Nukleonika 45, 179 (2000).

    Google Scholar 

  18. H. Bhuyan, M. Favre, H. Chuaqui, E. Valderrama, I. Mitchell, and E. Wyndham, AIP Conf. Proc. 875, 397 (2006).

    Article  ADS  Google Scholar 

  19. S. R. Mohanty, H. Bhuyan, N. K. Neog, R. K. Rout, and E. Hotta, Jpn. J. Appl. Phys. 44, 5199 (2005).

    Article  ADS  Google Scholar 

  20. M. Sohrabi, M. Habibi, H. R. Yousefi, and G. H. Roshani, Contrib. Plasma Phys. 53, 1 (2013).

    Article  Google Scholar 

  21. A. Pasternak and M. Sadowski, Czech. J. Phys. 50, 159 (2000).

    Article  ADS  Google Scholar 

  22. E. Skladnik-Sadowska, J. Baranowski, M. Milanese, R. Moroso, J. Pouzo, M. Sadowski, and J. Zebrowski, Radiat. Meas. 34, 315 (2001).

    Article  Google Scholar 

  23. M. Sadowski, J. Zebrowski, E. Rydygier, and J. Kucinski, Plasma Phys. Controlled Fusion 30, 763 (1988).

    Article  ADS  Google Scholar 

  24. G. M. El-Aragi, Plasma Sci. Technol. 12, 1 (2010).

    Article  ADS  Google Scholar 

  25. Y. Mizuguchi, J. I. Sakai, H. R. Yousefi, T. Haruki, and K. Masugata, Phys. Plasmas 14, 032704 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Habibi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, M., Habibi, M. & Ramezani, V. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors. Plasma Phys. Rep. 43, 196–201 (2017). https://doi.org/10.1134/S1063780X17020143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X17020143

Navigation