Skip to main content
Log in

On the Neutrino Millicharge

  • Elementary Particles and Fields Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The neutrino luminosity of a degenerate electron gas in a strong magnetic field under conditions of the neutron-star crust owing to plasmon decay to a neutrino pair via a nonstandard mechanism associated with the hypothesized neutrino electric millicharge is calculated. Relative upper bounds on the magnitude of the millicharge are obtained from a comparison of the results of this calculation with the neutrino luminosity caused by the respective standard process and with the luminosity induced by the neutrino magnetic moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Emel’yanov, Standard Model and its Extensions (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  2. P. Langacker, The Standard Model and Beyond, 2nd ed. (CRC, Boca Raton, FL, 2017).

    MATH  Google Scholar 

  3. Y. Nagashima, Beyond the Standard Model of Elementary Particle Physics (Wiley–VCH, Weinheim, 2014).

    Book  MATH  Google Scholar 

  4. J. Kopp, M. Lindner, T. Ota, and J. Sato, Phys. Rev. D 77, 013007 (2008); arXiv: 0708.0152 [hep-ph].

    Article  ADS  Google Scholar 

  5. T. Ohlsson, Rep. Prog. Phys. 76, 044201 (2013); arXiv:1209.2710 [hep-ph].

    Article  ADS  Google Scholar 

  6. M. C. Gonzalez-Garcia and M. Maltoni, J. High Energy Phys. 1309, 152 (2013); arXiv:1307.3092 [hepph].

    Article  ADS  Google Scholar 

  7. J. Liao, D. Marfatia, and K. Whisnant, J. High Energy Phys. 1701, 071 (2017); arXiv:1612.01443 [hep-ph].

    Article  ADS  Google Scholar 

  8. A. N. Khan and D. W. McKay, J. High Energy Phys. 1707, 143 (2017); arXiv:1704.06222 [hep-ph].

    Article  ADS  Google Scholar 

  9. K. J. Healey, A. A. Petrov, and D. Zhuridov, Phys. Rev. D 87, 117301 (2013); Phys. Rev. D 89, 059904 (2014); arXiv:1305.0584 [hep-ph].

    Article  ADS  Google Scholar 

  10. C. Giunti and A. Studenikin, Rev.Mod. Phys. 87, 531 (2015); arXiv:1403.6344v3 [hep-ph].

    Article  ADS  Google Scholar 

  11. Z.-Z. Xing and S. Zhou, Neutrinos in Particle Physics, Astronomy and Cosmology (Zhejiang Univ. Press, Hangzhou; Springer, Heidelberg, Dordrecht, London, New York, 2011).

    Book  MATH  Google Scholar 

  12. A. V. Borisov and P. E. Sizin, Phys. At. Nucl. 79, 414 (2016).

    Article  Google Scholar 

  13. A. V. Borisov and P. E. Sizin, in Proceedings of the 17th Lomonosov Conference on Elementary Particle Physics, Moscow, August 20–26, 2015, Ed. by A. I. Studenikin (World Scientific, Singapore, 2017), p. 499.

  14. R. Foot, G. C. Joshi, and R. R. Volkas, Mod. Phys. Lett. A 5, 2721 (1990).

    Article  ADS  Google Scholar 

  15. R. Foot, H. Lew, and R. R. Volkas, J. Phys. G 19, 361 (1993).

    Article  ADS  Google Scholar 

  16. Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016).

    Article  ADS  Google Scholar 

  17. G. Barbiellini and G. Cocconi, Nature (London, U.K.) 329, 21 (1987).

    Article  ADS  Google Scholar 

  18. A. I. Studenikin and I. V. Tokarev, Nucl. Phys. B 884, 396 (2014); arXiv:1209.3245 [hep-ph].

    Article  ADS  Google Scholar 

  19. G. G. Raffelt, Phys. Rep. 320, 319 (1999).

    Article  ADS  Google Scholar 

  20. R. C. Duncan and C. Thompson, Astrophys. J. Lett. 392, L9 (1992).

    Article  ADS  Google Scholar 

  21. P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars, Vol. 1: Equation of State and Structure (Springer, New York, 2007).

    Book  Google Scholar 

  22. M. V. Chistyakov and D. A. Rumyantsev, JETP 107, 533 (2008).

    Article  ADS  Google Scholar 

  23. A. V. Borisov, B. K. Kerimov, and P. E. Sizin, Phys. At. Nucl. 75, 1305 (2012).

    Article  Google Scholar 

  24. A. V. Borisov and P. E. Sizin, Mosc. Univ. Phys. Bull. 68, 114 (2013).

    Article  ADS  Google Scholar 

  25. D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P. Haensel, Phys. Rep. 354, 1 (2001).

    Article  ADS  Google Scholar 

  26. A. E. Shabad, Tr. FIAN 192, 5 (1988).

    MathSciNet  Google Scholar 

  27. A. I. Studenikin, Europhys. Lett. 107, 21001 (2014); arXiv:1302.1168 [hep-ph].

    Article  ADS  Google Scholar 

  28. N. F. Bell et al., Phys. Rev. Lett. 95, 151802 (2005); hep-ph/0504134.

    Article  ADS  Google Scholar 

  29. R. E. Shrock, Nucl. Phys. B 206, 359 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Borisov.

Additional information

Original Russian Text © A.V. Borisov, P.E. Sizin, 2018, published in Yadernaya Fizika, 2018, Vol. 81, No. 5, pp. 543–546.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, A.V., Sizin, P.E. On the Neutrino Millicharge. Phys. Atom. Nuclei 81, 583–587 (2018). https://doi.org/10.1134/S1063778818040026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778818040026

Navigation