Skip to main content
Log in

Determination of matter potential from global analysis of neutrino oscillation data

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We quantify our current knowledge of the size and flavor structure of the matter effects in the evolution of neutrinos based solely on the global analysis of oscillation neutrino data. The results are translated in terms of the present allowed ranges for the corresponding non-standard neutrino interactions in matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].

    ADS  Google Scholar 

  2. V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].

    Article  ADS  Google Scholar 

  3. M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with massive neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  5. M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].

    Article  ADS  Google Scholar 

  6. S.M. Bilenky, J. Hosek and S.T. Petcov, On oscillations of neutrinos with Dirac and Majorana masses, Phys. Lett. B 94 (1980) 495 [INSPIRE].

    Article  ADS  Google Scholar 

  7. P. Langacker, S.T. Petcov, G. Steigman and S. Toshev, On the Mikheev-Smirnov-Wolfenstein (MSW) mechanism of amplification of neutrino oscillations in matter, Nucl. Phys. B 282 (1987) 589 [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, NuFit 1.1 (2013), http://www.nu-fit.org.

  9. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

    ADS  Google Scholar 

  11. D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].

    ADS  Google Scholar 

  12. L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

    ADS  Google Scholar 

  13. S. Mikheev and A.Y. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].

    Google Scholar 

  14. E. Roulet, MSW effect with flavor changing neutrino interactions, Phys. Rev. D 44 (1991) 935 [INSPIRE].

    ADS  Google Scholar 

  15. M. Guzzo, A. Masiero and S. Petcov, On the MSW effect with massless neutrinos and no mixing in the vacuum, Phys. Lett. B 260 (1991) 154 [INSPIRE].

    Article  ADS  Google Scholar 

  16. V.D. Barger, R. Phillips and K. Whisnant, Solar neutrino solutions with matter enhanced flavor changing neutral current scattering, Phys. Rev. D 44 (1991) 1629 [INSPIRE].

    ADS  Google Scholar 

  17. G.L. Fogli and E. Lisi, Solar neutrino data, solar model uncertainties and solar matter enhanced neutrino oscillations, Astropart. Phys. 2 (1994) 91 [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Bergmann, The solar neutrino problem in the presence of flavor changing neutrino interactions, Nucl. Phys. B 515 (1998) 363 [hep-ph/9707398] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Bergmann, Y. Grossman and E. Nardi, Neutrino propagation in matter with general interactions, Phys. Rev. D 60 (1999) 093008 [hep-ph/9903517] [INSPIRE].

    ADS  Google Scholar 

  20. S. Bergmann, M. Guzzo, P. de Holanda, P. Krastev and H. Nunokawa, Status of the solution to the solar neutrino problem based on nonstandard neutrino interactions, Phys. Rev. D 62 (2000) 073001 [hep-ph/0004049] [INSPIRE].

    ADS  Google Scholar 

  21. M. Guzzo, H. Nunokawa, P. de Holanda and O. Peres, On the masslessjust-sosolution to the solar neutrino problem, Phys. Rev. D 64 (2001) 097301 [hep-ph/0012089] [INSPIRE].

    ADS  Google Scholar 

  22. G. Fogli, E. Lisi, A. Palazzo and A. Rotunno, Solar neutrino oscillations and indications of matter effects in the sun, Phys. Rev. D 67 (2003) 073001 [hep-ph/0211414] [INSPIRE].

    ADS  Google Scholar 

  23. A. Friedland, C. Lunardini and C. Pena-Garay, Solar neutrinos as probes of neutrino matter interactions, Phys. Lett. B 594 (2004) 347 [hep-ph/0402266] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F. Escrihuela, O. Miranda, M. Tortola and J. Valle, Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data, Phys. Rev. D 80 (2009) 105009 [Erratum ibid. D 80 (2009) 129908] [arXiv:0907.2630] [INSPIRE].

    ADS  Google Scholar 

  25. A. Bolanos, O. Miranda, A. Palazzo, M. Tortola and J. Valle, Probing non-standard neutrino-electron interactions with solar and reactor neutrinos, Phys. Rev. D 79 (2009) 113012 [arXiv:0812.4417] [INSPIRE].

    ADS  Google Scholar 

  26. H. Minakata and C. Pena-Garay, Solar neutrino observables sensitive to matter effects, Adv. High Energy Phys. 2012 (2012) 349686 [arXiv:1009.4869] [INSPIRE].

    Google Scholar 

  27. A. Palazzo, Hint of non-standard dynamics in solar neutrino conversion, Phys. Rev. D 83 (2011) 101701 [arXiv:1101.3875] [INSPIRE].

    ADS  Google Scholar 

  28. R. Bonventre et al., Non-standard models, solar neutrinos and large θ 13, arXiv:1305.5835 [INSPIRE].

  29. Y. Grossman, Nonstandard neutrino interactions and neutrino oscillation experiments, Phys. Lett. B 359 (1995) 141 [hep-ph/9507344] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Gonzalez-Garcia, Y. Grossman, A. Gusso and Y. Nir, New CP-violation in neutrino oscillations, Phys. Rev. D 64 (2001) 096006 [hep-ph/0105159] [INSPIRE].

    ADS  Google Scholar 

  31. A. Gago, M. Guzzo, H. Nunokawa, W. Teves and R. Zukanovich Funchal, Probing flavor changing neutrino interactions using neutrino beams from a muon storage ring, Phys. Rev. D 64 (2001) 073003 [hep-ph/0105196] [INSPIRE].

    ADS  Google Scholar 

  32. N. Fornengo, M. Maltoni, R. Tomas and J. Valle, Probing neutrino nonstandard interactions with atmospheric neutrino data, Phys. Rev. D 65 (2002) 013010 [hep-ph/0108043] [INSPIRE].

    ADS  Google Scholar 

  33. P. Huber and J. Valle, Nonstandard interactions: atmospheric versus neutrino factory experiments, Phys. Lett. B 523 (2001) 151 [hep-ph/0108193] [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Ota, J. Sato and N. Yamashita, Oscillation enhanced search for new interaction with neutrinos, Phys. Rev. D 65 (2002) 093015 [hep-ph/0112329] [INSPIRE].

    ADS  Google Scholar 

  35. P. Huber, T. Schwetz and J. Valle, Confusing nonstandard neutrino interactions with oscillations at a neutrino factory, Phys. Rev. D 66 (2002) 013006 [hep-ph/0202048] [INSPIRE].

    ADS  Google Scholar 

  36. M. Campanelli and A. Romanino, Effects of new physics in neutrino oscillations in matter, Phys. Rev. D 66 (2002) 113001 [hep-ph/0207350] [INSPIRE].

    ADS  Google Scholar 

  37. T. Ota and J. Sato, Can ICARUS and OPERA give information on a new physics?, Phys. Lett. B 545 (2002) 367 [hep-ph/0202145] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Gonzalez-Garcia and M. Maltoni, Atmospheric neutrino oscillations and new physics, Phys. Rev. D 70 (2004) 033010 [hep-ph/0404085] [INSPIRE].

    ADS  Google Scholar 

  39. A. Friedland, C. Lunardini and M. Maltoni, Atmospheric neutrinos as probes of neutrino-matter interactions, Phys. Rev. D 70 (2004) 111301 [hep-ph/0408264] [INSPIRE].

    ADS  Google Scholar 

  40. A. Friedland and C. Lunardini, A test of tau neutrino interactions with atmospheric neutrinos and K2K, Phys. Rev. D 72 (2005) 053009 [hep-ph/0506143] [INSPIRE].

    ADS  Google Scholar 

  41. M. Blennow, T. Ohlsson and W. Winter, Non-standard Hamiltonian effects on neutrino oscillations, Eur. Phys. J. C 49 (2007) 1023 [hep-ph/0508175] [INSPIRE].

    Article  ADS  Google Scholar 

  42. N. Kitazawa, H. Sugiyama and O. Yasuda, Will MINOS see new physics?, hep-ph/0606013 [INSPIRE].

  43. A. Friedland and C. Lunardini, Two modes of searching for new neutrino interactions at MINOS, Phys. Rev. D 74 (2006) 033012 [hep-ph/0606101] [INSPIRE].

    ADS  Google Scholar 

  44. M. Blennow, T. Ohlsson and J. Skrotzki, Effects of non-standard interactions in the MINOS experiment, Phys. Lett. B 660 (2008) 522 [hep-ph/0702059] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Kopp, M. Lindner and T. Ota, Discovery reach for non-standard interactions in a neutrino factory, Phys. Rev. D 76 (2007) 013001 [hep-ph/0702269] [INSPIRE].

    ADS  Google Scholar 

  46. J. Kopp, M. Lindner, T. Ota and J. Sato, Non-standard neutrino interactions in reactor and superbeam experiments, Phys. Rev. D 77 (2008) 013007 [arXiv:0708.0152] [INSPIRE].

    ADS  Google Scholar 

  47. N. Ribeiro, H. Minakata, H. Nunokawa, S. Uchinami and R. Zukanovich-Funchal, Probing non-standard neutrino interactions with neutrino factories, JHEP 12 (2007) 002 [arXiv:0709.1980] [INSPIRE].

    Article  Google Scholar 

  48. ISS Physics Working Group collaboration, A. Bandyopadhyay et al., Physics at a future neutrino factory and super-beam facility, Rept. Prog. Phys. 72 (2009) 106201 [arXiv:0710.4947] [INSPIRE].

    Article  ADS  Google Scholar 

  49. N.C. Ribeiro et al., Probing nonstandard neutrino physics by two identical detectors with different baselines, Phys. Rev. D 77 (2008) 073007 [arXiv:0712.4314] [INSPIRE].

    ADS  Google Scholar 

  50. A. Esteban-Pretel, J.W. Valle and P. Huber, Can OPERA help in constraining neutrino non-standard interactions?, Phys. Lett. B 668 (2008) 197 [arXiv:0803.1790] [INSPIRE].

    Article  ADS  Google Scholar 

  51. M. Blennow, D. Meloni, T. Ohlsson, F. Terranova and M. Westerberg, Non-standard interactions using the OPERA experiment, Eur. Phys. J. C 56 (2008) 529 [arXiv:0804.2744] [INSPIRE].

    Article  ADS  Google Scholar 

  52. J. Kopp, T. Ota and W. Winter, Neutrino factory optimization for non-standard interactions, Phys. Rev. D 78 (2008) 053007 [arXiv:0804.2261] [INSPIRE].

    ADS  Google Scholar 

  53. T. Ohlsson and H. Zhang, Non-standard interaction effects at reactor neutrino experiments, Phys. Lett. B 671 (2009) 99 [arXiv:0809.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  54. A. Palazzo and J. Valle, Confusing non-zero θ 13 with non-standard interactions in the solar neutrino sector, Phys. Rev. D 80 (2009) 091301 [arXiv:0909.1535] [INSPIRE].

    ADS  Google Scholar 

  55. M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Testing matter effects in propagation of atmospheric and long-baseline neutrinos, JHEP 05 (2011) 075 [arXiv:1103.4365] [INSPIRE].

    Article  ADS  Google Scholar 

  56. O. Miranda, M. Tortola and J. Valle, Are solar neutrino oscillations robust?, JHEP 10 (2006) 008 [hep-ph/0406280] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297 [INSPIRE].

    Article  ADS  Google Scholar 

  58. T.-K. Kuo and J.T. Pantaleone, The solar neutrino problem and three neutrino oscillations, Phys. Rev. Lett. 57 (1986) 1805 [INSPIRE].

    Article  ADS  Google Scholar 

  59. KamLAND collaboration, A. Gando et al., Constraints on θ 13 from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].

    ADS  Google Scholar 

  60. B. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].

    Article  ADS  Google Scholar 

  61. F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].

    Article  ADS  Google Scholar 

  62. SAGE collaboration, J. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 20022007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].

    ADS  Google Scholar 

  63. Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].

    ADS  Google Scholar 

  64. Super-Kamiokande collaboration, J. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].

    ADS  Google Scholar 

  65. Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].

    ADS  Google Scholar 

  66. M. Smy, Super-Kamiokandes solar ν results, talk given at the XXV International Conference on Neutrino Physics, Kyoto Japan, 3–9 Jun 2012.

  67. Borexino collaboration, G. Bellini et al., Precision measurement of the 7 Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].

    Article  ADS  Google Scholar 

  68. Borexino collaboration, G. Bellini et al., Measurement of the solar 8 B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].

    ADS  Google Scholar 

  69. SNO collaboration, B. Aharmim et al., Measurement of the νe and total 8 B solar neutrino fluxes with the Sudbury Neutrino Observatory Phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [INSPIRE].

    ADS  Google Scholar 

  70. SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of 8 B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].

    ADS  Google Scholar 

  71. SNO collaboration, B. Aharmim et al., An independent measurement of the total active 8 B solar neutrino flux using an array of 3 He proportional counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [INSPIRE].

    Article  ADS  Google Scholar 

  72. SNO collaboration, B. Aharmim et al., Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].

    ADS  Google Scholar 

  73. J.N. Bahcall, A.M. Serenelli and S. Basu, New solar opacities, abundances, helioseismology and neutrino fluxes, Astrophys. J. 621 (2005) L85 [astro-ph/0412440] [INSPIRE].

    Article  ADS  Google Scholar 

  74. C. Pena-Garay and A. Serenelli, Solar neutrinos and the solar composition problem, arXiv:0811.2424 [INSPIRE].

  75. L. Pik, Study of the neutrino mass hierarchy with the atmospheric neutrino data observed in Super-Kamiokande, Ph.D. Thesis, University of Tokyo, Tokyo Japan (2012).

  76. Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].

    ADS  Google Scholar 

  77. MINOS collaboration, P. Adamson et al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].

    Article  ADS  Google Scholar 

  78. MINOS collaboration, P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].

    Article  ADS  Google Scholar 

  79. M. Ikeda, Recent results from T2K, talk given at Rencontres de Moriond EW 2013, La Thuile Italy, 2–9 Mar 2013.

  80. CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].

    Article  ADS  Google Scholar 

  81. Palo Verde collaboration, A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Prog. Part. Nucl. Phys. 48 (2002) 113 [INSPIRE].

    Article  ADS  Google Scholar 

  82. Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].

    ADS  Google Scholar 

  83. Daya Bay collaboration, F. An et al., Improved measurement of electron antineutrino disappearance at Daya Bay, Chin. Phys. C 37 (2013) 011001 [arXiv:1210.6327] [INSPIRE].

    Article  Google Scholar 

  84. RENO collaboration, S.-H. Seo, New Results from RENO, talk given at the XV International Workshop on Neutrino Telescopes, Venice Italy, 11–15 Mar 2013.

  85. T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].

    Article  ADS  Google Scholar 

  86. Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].

    Article  ADS  Google Scholar 

  87. A. Kuvshinnikov, L. Mikaelyan, S. Nikolaev, M. Skorokhvatov and A. Etenko, Measuring the anti-electron-neutrino + pn + e + cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor (in Russian), JETP Lett. 54 (1991) 253 [INSPIRE].

    ADS  Google Scholar 

  88. Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].

    ADS  Google Scholar 

  89. G. Vidyakin et al., Detection of anti-neutrinos in the flux from two reactors, Sov. Phys. JETP 66 (1987) 243 [INSPIRE].

    Google Scholar 

  90. G. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [INSPIRE].

    ADS  Google Scholar 

  91. H. Kwon et al., Search for neutrino oscillations at a fission reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].

    ADS  Google Scholar 

  92. CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino oscillation experiments at the Gosgen nuclear power reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].

    ADS  Google Scholar 

  93. Z.D. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].

    ADS  Google Scholar 

  94. A. Afonin et al., A study of the reaction \( {{\overline{\nu}}_e} \) + Pe + + N on a nuclear reactor, Sov. Phys. JETP 67 (1988) 213 [INSPIRE].

    Google Scholar 

  95. CHARM collaboration, J. Dorenbosch et al., Experimental verification of the universality of νe and νμ coupling to the neutral weak current, Phys. Lett. B 180 (1986) 303 [INSPIRE].

    Article  ADS  Google Scholar 

  96. CHARM collaboration, J. Allaby et al., A precise determination of the electroweak mixing angle from semileptonic neutrino scattering, Z. Phys. C 36 (1987) 611 [INSPIRE].

    ADS  Google Scholar 

  97. A. Blondel et al., Electroweak parameters from a high statistics neutrino nucleon scattering experiment, Z. Phys. C 45 (1990) 361 [INSPIRE].

    Google Scholar 

  98. NuTeV collaboration, G. Zeller et al., A precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett. 88 (2002) 091802 [Erratum ibid. 90 (2003) 239902] [hep-ex/0110059] [INSPIRE].

    Article  ADS  Google Scholar 

  99. S. Davidson, C. Pena-Garay, N. Rius and A. Santamaria, Present and future bounds on nonstandard neutrino interactions, JHEP 03 (2003) 011 [hep-ph/0302093] [INSPIRE].

    Article  ADS  Google Scholar 

  100. C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [arXiv:0907.0097] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Maltoni.

Additional information

ArXiv ePrint: 1307.3092

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Garcia, M.C., Maltoni, M. Determination of matter potential from global analysis of neutrino oscillation data. J. High Energ. Phys. 2013, 152 (2013). https://doi.org/10.1007/JHEP09(2013)152

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2013)152

Keywords

Navigation