Skip to main content
Log in

Method and apparatus for studying high-temperature properties of conductive materials in the interests of nuclear power engineering

  • Solids Under Extreme Conditions
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Physical processes during a rapid (microsecond) heating of metals, carbon, and their compounds by a single pulse of electric current are discussed. Effects arising in such short-term heating near the melting point are noted: the electron emission and heat capacity anomalies and the possible occurrence of Frenkel pair (interstitial atom and vacancy). The problem of measuring the temperature using optical methods under pulse heating is considered, including the use of a specimen in the form of a blackbody model. The melting temperature of carbon (4800–4900 K) is measured at increased pulse pressure. The results of studying the properties of metals (by example of zirconium and hafnium) and of zirconium carbide at high temperatures are discussed. The schematics of the pulse setups and the instrumentation, as well as specimens for a pulse experiment, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Il’in and S. V. Lebedev, Sov. Phys. JETP 17, 681 (1962).

    Google Scholar 

  2. V. A. Glukhikh, Vopr. At. Nauki Tekh., Nos. 1–2, 113 (1978).

    Google Scholar 

  3. V. V. Andrianov, V. P. Baev, S. V. Lebedev, and A. I. Savvatimskiy, Sov. Phys. Dokl. 26, 216 (1981).

    ADS  Google Scholar 

  4. G. A. Mesyats and D. I. Proskurovskii, JETP Lett. 13, 4 (1971).

    ADS  Google Scholar 

  5. S. P. Bugaev, E. A. Litvinov, G. A. Mesyats, and D. I. Proskurovskii, Sov. Phys. Usp. 18, 51 (1975).

    Article  ADS  Google Scholar 

  6. E. A. Litvinov, G. A. Mesyats, and D. I. Proskurovskii, Sov. Phys. Usp. 26, 138 (1983).

    Article  ADS  Google Scholar 

  7. S. P. Ananiev, N. N. Gennadiev, V. F. Demichev, and P. Levit, Sov. Tech. Phys. Lett. 8, 106 (1982).

    Google Scholar 

  8. S. V. Lebedev and A. I. Savvatimskiy, Teplofiz. Vys. Temp. 19, 850 (1981).

    Google Scholar 

  9. S. V. Lebedev and A. I. Savvatimskiy, Sov. Phys. Usp. 27, 749 (1984).

    Article  ADS  Google Scholar 

  10. Ya. I. Frenkel, Kinetic Theory of Liquids (Clarendon, Oxford, 1946).

    MATH  Google Scholar 

  11. S. V. Lebedev, Teplofiz. Vys. Temp. 18, 273 (1980).

    Google Scholar 

  12. S. V. Lebedev, Doctoral (Phys. Math.) Dissertation (Inst. High Temp., Moscow, 1980).

    Google Scholar 

  13. S. V. Lebedev and B. V. Lukin, Teplofiz. Vys. Temp. 7, 1020 (1969).

    Google Scholar 

  14. S. V. Lebedev and A. I. Savvatimskiy, Teplofiz. Vys. Temp. 8, 494 (1970).

    Google Scholar 

  15. S. V. Lebedev, Zh. Eksp. Teor. Fiz. 27, 605 (1954).

    Google Scholar 

  16. S. V. Lebedev, Sov. Phys. JETP 5, 243 (1957).

    Google Scholar 

  17. N. F. Mott, Adv. Phys. 16 (61), 49 (1967). doi 10.1080/00018736700101265

    Article  ADS  Google Scholar 

  18. A. I. Savvatimskiy, in Joint Inst. High Temperatures JIHT RAS: Achievements and Perspectives, 50 Years (Ob’ed. Inst. Vys. Temp. RAN, Moscow, 2010), Chap. 9 [in Russian].

    Google Scholar 

  19. A. I. Savvatimskiy, Int. J. Thermophys. 17, 495 (1996).

    Article  ADS  Google Scholar 

  20. I. G. Kesaev, Cathodic Processes of Electric Arc (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  21. S. V. Lebedev, Izv. Akad. Nauk Armyan. SSR, No. 1, 33 (1950).

    Google Scholar 

  22. S. V. Lebedev and A. I. Savvatimski, in Thermal Physics Review, Ed. by A. E. Sheindlin and V. E. Fortov (Harwood Academic, Yverdon, Switzerland, 1993), Vol. 5, No. 3, p. 1.

    Google Scholar 

  23. S. V. Lebedev and A. I. Savvatimski, Sov. Tech. Phys. 29, 1045 (1984).

    Google Scholar 

  24. R. Maninger, in Exploding Wires, Ed. by W. G. Chace and H. K. Moore (Plenum, Oxford, 1959).

    Google Scholar 

  25. V. V. Jangobegov et al., in Proceedings of the International Scientific Conference ATOMTEKH-215 on Electrophysics, p. 20.

  26. J. D. Jackson, Classical Electrodynamics (Wiley, New York, London, 1962).

    MATH  Google Scholar 

  27. N. A. Gokcen, E. T. Chang, T. M. Poston, and D. I. Spencer, High Temp. Sci. 8, 81 (1976).

    Google Scholar 

  28. S. V. Lebedev and S. E. Khaikin, Zh. Eksp. Teor. Fiz. 26, 723 (1954).

    Google Scholar 

  29. L. N. Borodovskaya and S. V. Lebedev, Sov. Phys. JETP 1, 71 (1955).

    Google Scholar 

  30. G. S. Sarkisov, P. V. Sasorov, K. W. Struve, D. H. McDaniel, A. N. Gribov, and G. M. Oleinik, Phys. Rev. E 66, 046413 (2002).

    Article  ADS  Google Scholar 

  31. G. S. Sarkisov, K. W. Struve, and D. H. McDaniel, Phys. Plasmas 12, 052702 (2005).

    Article  ADS  Google Scholar 

  32. S. V. Lebedev and A. I. Savvatimskiy, Teplofiz. Vys. Temp. 16, 211 (1978).

    Google Scholar 

  33. S. V. Onufriev, A. I. Savvatimskiy, and A. M. Kondratyev, High Temp.–High Press. 43, 217 (2014).

    Google Scholar 

  34. A. I. Savvatimskiy, S. V. Onufriev, and A. M. Kondratyev, Carbon 98, 534 (2016).

    Article  Google Scholar 

  35. A. M. Kondratyev, S. A. Muboyajan, S. V. Onufriev, and A. I. Savvatimskiy, J. Alloy Compd. 631, 52 (2015).

    Article  Google Scholar 

  36. A. I. Savvatimskiy and V. N. Korobenko, The High-Temperature Properties of Metals of Atomic Energetics (Zr, Hf, Fe on Melting and in the Liquid State) (Mosk. Energet. Inst., Moscow, 2012) [in Russian].

    Google Scholar 

  37. P. F. Paradis and W. K. Rhim, J. Mater. Res. 14, 3713 (1999).

    Article  ADS  Google Scholar 

  38. J. K. Fink, http://www.insc.anl.gov/matprop/zirconium/zrhfus99.pdf.

  39. V. N. Korobenko and A. D. Rakhel, J. Phys.: Condens. Matter 26, 045701 (2014).

    Google Scholar 

  40. A. I. Savvatimskiy, Melting Properties of Graphite and Liquid Carbon (Fizmatkniga, Moscow, 2013) [in Russian].

    Google Scholar 

  41. M. M. Martyniuk, V. I. Tsapkov, O. G. Panteleichuk, and I. Karimhodzhaev, Investigation of the Physical Properties of Metals under Pulsed Heating (Univ. Druzhby Narodov, Moscow, 1972), p. 1 [in Russian].

    Google Scholar 

  42. M. M. Martyniuk and V. I. Tsapkov, Izv. Akad. Nauk SSSR, Metally, No. 2, 181 (1974).

    Google Scholar 

  43. K. W. Henry, D. R. Stephens, D. J. Steinberg, and E. B. Royce, Rev. Sci. Instrum., No. 12, 1777 (1972).

    Article  ADS  Google Scholar 

  44. F. P. Bundy, J. Geophys. Res. B 85, 6930 (1980).

    Article  ADS  Google Scholar 

  45. A. I. Savvatimskiy, in Proceedings of the All-Russian Conference on Pulsed High-Current Semiconductor Electronics-2015 (Fiz. Inst. RAN, Moscow, 2015), p. 14.

    Google Scholar 

  46. G. W. Autio and E. Scala, Carbon 6, 41 (1968).

    Article  Google Scholar 

  47. A. V. Baitin, A. A. Lebedev, S. V. Romanenko, V. N. Senchenko, and M. A. Sheindlin, High Temp.–High Press. 21, 157 (1990).

    Google Scholar 

  48. V. A. Petrov, Int. J. Thermophys. 30, 1938 (2009).

    Article  ADS  Google Scholar 

  49. S. V. Onufriev and A. I. Savvatimskiy, High Temp. 54, 510 (2016).

    Article  Google Scholar 

  50. A. I. Savvatimskiy and V. N. Korobenko, High Temp. 45, 159 (2007).

    Article  Google Scholar 

  51. P.-F. Paradis, T. Ishikawa, and S. Yoda, Int. J. Thermophys. 24, 239 (2003).

    Article  Google Scholar 

  52. V. N. Korobenko, A. I. Savvatimskiy, and R. Cheret, Int. J. Thermophys. 20, 1247 (1999).

    Article  Google Scholar 

  53. M. Togaya, in New Kinds of Phase Transitions: Transformations in Disordered Substances, Ed. by V. Brazhkin, S. V. Buldyrev, V. N. Ryzhov, and H. E. Stanley, Vol. 81 of NATO Science Series II (Kluwer, Dordrecht, 2002), 255.

    Book  Google Scholar 

  54. S. V. Onufriev, A. M. Kondratiev, A. I. Savvatimskiy, G. E. Val’yano, and S. A. Muboyajan, High Temp. 53, 478 (2015).

    Article  Google Scholar 

  55. A. I. Savvatimskiy, Carbon at High Temperatures, Vol. 134 of Series in Materials Science (Springer, Heidelberg, 2015), p. 1.

    Google Scholar 

  56. R. I. Ilkaev, V. T. Punin, A. Ya. Uchaev, N. I. Selchenkova, L. A. Platonova, E. V. Kosheleva, and A. S. Konkin, Yad. Fiz. Inzhiniring 1, 99 (2010).

    Google Scholar 

  57. R. I. Ilkaev, V. T. Punin, A. Ya. Uchaev, N. I. Selchenkova, L. A. Platonova, E. V. Kosheleva, R. I. Veselova, and L. V. Zhabyka, Yad. Fiz. Inzhiniring 1, 556 (2010).

    Google Scholar 

  58. M. V. Zhernokletov, V. I. Kargin, D. V. Kotelnikov, A. V. Melkozerov, A. L. Mikhailov, A. Yu. Nagovitsyn, N. F. Popkov, and E. A. Ryaslov, Dvoin. Tekhnol., No. 1, 11 (2000).

    Google Scholar 

  59. B. L. Glushak, N. I. Zavada, S. Novikov, L. A. Platonova, N. I. Selchenkova, I. R. Trunin, A. Ya. Uchaev, and N. A. Yukina, J. Appl. Mech. Tech. Phys. 37, 862 (1996).

    Article  ADS  Google Scholar 

  60. N. D. Orekhov and V. V. Stegailov, Carbon 87, 358 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Savvatimskiy.

Additional information

Original Russian Text © A.I. Savvatimskiy, S.V. Onufriev, 2015, published in Yadernaya Fizika i Inzhiniring, 2015, Vol. 6, Nos. 11–12, pp. 622–642.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savvatimskiy, A.I., Onufriev, S.V. Method and apparatus for studying high-temperature properties of conductive materials in the interests of nuclear power engineering. Phys. Atom. Nuclei 79, 1637–1655 (2016). https://doi.org/10.1134/S1063778816140131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778816140131

Keywords

Navigation