Skip to main content
Log in

Experiments on expanded liquid metals at high temperatures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The electrical resistivity of liquid tungsten was measured using electric pulse heating of the wires inside capillary tubes. Under “fast” heating (10 µs) or “slow” heating (50 µs), the wire expands and fills the inner cavity of the capillary. On the oscillogram traces of the voltage drop across the wire, one can see the phases solid, liquid, fast expansion, and then the moment when the cavity is filled with the metal. Using the voltage drop, current, and volume of the capillary cavity, one can calculate the electrical resistivity,ρ, of the expanded metal. Tungsten densities from 7.5 to 1 g · cm−3(3 x 1022 to 0.5 x 1022 atoms · cm−3) were investigated at temperatures from 10 x 103 to 14 x 103 K. For these densities, the electrical resistivity increased from 0.5 to 5mΩ·cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. E. Cusak,Prog. Theor. Phys. Suppl. 72:81 (1982).

    Article  ADS  Google Scholar 

  2. F. Hensel, inPhysics and Chemistry of Electrons and lons in Condensed Matter, J. V. Acrivos, N. P. Mott, and A. D. Yoffe, eds. NATO ASI Series C (D. Reidel, Dordrecht, Holland, 1984), Vol. 130, p. 401.

    Chapter  Google Scholar 

  3. A. A. Likalter,Usp. Fiz. Nauk. 162:119 (1992).

    Article  Google Scholar 

  4. S. V. Lebedev,Zh. Eksp. Teor. Fiz. 27:605 (1954);Zh. Eksp. Teor. Fiz. 32:199 (1957);Zh. Eksp. Tear. Fiz. 50:509 (1966).

    Google Scholar 

  5. A. Cezairliyan,J. Res. Natl. Bur. Stand. 75A:565 (1971).

    Article  Google Scholar 

  6. A. Cezairliyan,High Temp. High Press 4:453 (1972).

    Google Scholar 

  7. J. W. Shaner, G. R. Gathers, and C. Minichino,High Temp. High Press 8:425 (1976).

    Google Scholar 

  8. U. Seydel and W. Fucke,J. Phys. F Metal Phys. 8:L157 (1978).

    Article  ADS  Google Scholar 

  9. U. Seydel and W. Kitzel,J. Phys. F Metal Phys. 9:L153 (1979).

    Article  ADS  Google Scholar 

  10. G. R. Gathers,Int. J. Thermophys. 4:209 (1983).

    Article  ADS  Google Scholar 

  11. R. S. Hixson, M. A. Winkler, and J. W. Shaner,Int. J. Thermophys. 7:161 (1986).

    Article  ADS  Google Scholar 

  12. A. Berthailt, L. Arles, and J. Matricon,Int. J. Thermophys. 7:167 (1986).

    Article  ADS  Google Scholar 

  13. G. R. Gathers,Rep. Prog. Phys. 49:341 (1986).

    Article  ADS  Google Scholar 

  14. A. Cezairliyan and A. P. Müller,Int. J. Thermophys. 11:643 (1990);Int. J. Thermophys. 11:653 (1990).

    Article  ADS  Google Scholar 

  15. R. S. Hixson and M. A. Winkler,Int. J. Thermophys. 11:709 (1990).

    Article  ADS  Google Scholar 

  16. G. Pottlacher and H. Jager,Int. J. Thermophys. 11:719 (1990).

    Article  ADS  Google Scholar 

  17. A. Cezairliyan, G. R. Gathers, A. M. Malvezzi, A. P. Miller, F. Righini, and J. W. Shaner,Int. J. Thermophys. 11:819 (1990).

    Article  ADS  Google Scholar 

  18. Th. Thevenin, L. Arles, M. Boivineau, and J. M. Vermeulen,Int. J. Thermophys. 14:441 (1993).

    Article  ADS  Google Scholar 

  19. J. L. McClure and A. Cezairliyan,Int. J. Thermophys. 14:449 (1993).

    Article  ADS  Google Scholar 

  20. F. Righini, G. C. Bussolino, A. Rosso, and J. Spisiak,Int. J. Thermophys. 14:485 (1993);Int. J. Thermophys. 14:495 (1993).

    Article  ADS  Google Scholar 

  21. S. V. Lebedev and A. I. Savvatimski,Teplofiz. Vys. Temp. 16:211 (1978).

    Google Scholar 

  22. V. V. Ivanov, S. V. Lebedev, and A. I. Savvatimski,J. Phys. F Metal Phys. 14:1641 (1984).

    Article  ADS  Google Scholar 

  23. V. V. Ivanov, S. V. Lebedev, and A. I. Savvatimski,Teplofiz. Vys. Temp. 20:1093 (1982).

    Google Scholar 

  24. V. V. Ivanov, S. V. Lebedev, and A. I. Savvatimski,Teplofiz. Vys. Temp. 21:390 (1983).

    Google Scholar 

  25. S. V. Lebedev and A. I. Savvatimski, inThermal Physics Reviews, vol. 5, Part 3, A. E. Sheindlin and V. E. Fortov, eds. (Harwood Academic GmbH, Yverdon, Switzerland, 1993), pp. 1–79.

    Google Scholar 

  26. S. V. Lebedev, A. I. Savvatimski, and Y. B. Smirnov,Templofiz. Vys. Temp. 9:635 (1971).

    Google Scholar 

  27. U. Seydel, H. Bauhof, W. Fucke, and H. Wadle,High Temp. High Press. 11:35 (1979).

    Google Scholar 

  28. S. V. Lebedev and A. I. Savvatimski,Teplofiz. Vys. Temp. 8:524 (1970).

    Google Scholar 

  29. R. Szwarc, E. R. Plante, and J. J. Diamand,Phys. Chem. 69A, No. 5 (1965).

  30. N. Ben-Yosef and A. G. Rubin,Phys. Rev. Lett. 23:289 (1969).

    Article  ADS  Google Scholar 

  31. Alan W. De Silva and H.-J. Kunze,Phys. Rev. E. 49:4448 (1994).

    ADS  Google Scholar 

  32. I. Ya. Dikhter and S. V. Lebedev,High Temp. High Press. 2:55 (1970).

    Google Scholar 

  33. S. Gubar and I. K. Kikoin,J. Phys. (Acad. Sci. USSR) 9:52 (1945).

    Google Scholar 

  34. C. C. Bradley,Phil. Mag. 8:1535 (1963).

    Article  ADS  Google Scholar 

  35. A. A. Likalter,J. Phys. Condens. Matter 4:10125 (1992).

    Article  ADS  Google Scholar 

  36. V. V. Ivanov and A. I. Savvatimski,Priborv Tekn. Eksper. 4:108 (1982).

    Google Scholar 

  37. V. V. Andrianov, V. P. Baev, S. V. Lebedev, and A. I. Savvatimski,Doklady Akad. Nauk USSR (Fiz.) 256:1119 (1981).

    ADS  Google Scholar 

  38. S. V. Lebedev, G. I. Mozharov and A. I. Savvatimski,Elektrichestvo (1981), No. 7, p. 53.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savvatimski, A.I. Experiments on expanded liquid metals at high temperatures. Int J Thermophys 17, 495–505 (1996). https://doi.org/10.1007/BF01443406

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01443406

Key words

Navigation