Skip to main content
Log in

Abrupt Increase of the Absorption Coefficient of Alumina at Melting by Laser Radiation and Its Decrease at Solidification

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Experimental data for the normal-hemispherical reflectivity R of remolded aluminum oxide ceramics for wavelengths of (0.488, 0.6328, 1.15, and 3.39) μm and effective (radiance) temperatures T eff1 and T eff2 for wavelengths of 0.55 μm and 0.72 μm were obtained in the process of rapid subsecond heating by CO2 laser radiation in air and vacuum from room temperature to the formation of thin molten layers of 0.6 mm to 0.7 mm thickness and of subsequent rapid free cooling with solidification of the melt when the laser radiation was blocked. Experimentally and by numerical simulation of combined radiation and conduction heat transfer, the influence of the heating radiation flux on the formation of the thin melt on the surface of ceramics with an abrupt increase of T eff1 and T eff2 and on the signal of the spectrometer in the infrared range from 2 μm to 11 μm at melting and on its decrease at solidification were studied. The radiation heat flux varied from 500 W · cm−2 to 2000 W · cm−2. It is shown that the determining effect on the temperature field and on the intensity of outgoing radiation is caused by the formation of the isothermal continuous two-phase zone and the abrupt increase (decrease) of the absorption coefficient of the melt. The importance of kinetics in the abrupt change of the absorption coefficient of molten Al2O3 is noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lingart Yu.K., Petrov V.A., Tikhonova N.A.: Teplofiz. Vys. Temp. 20, 872 (1982)

    Google Scholar 

  2. Rosenbaum O., De Sousa Meneses D., Auger Y., Chermanne S., Echegut P.: Rev. Sci. Instrum. 70, 4020 (1999)

    Article  ADS  Google Scholar 

  3. J.F. Brun, D. De Sousa Meneses, P. Echegut, in Proceedings of the Fifteenth Symposium on Thermophysical Properties, Boulder, Colorado, 2003

  4. Sarou-Kanian V., Rifflet J.C., Millot F.: Int. J. Thermophys. 26, 1263 (2005)

    Article  Google Scholar 

  5. V.A. Petrov, A.Yu. Vorobyev, in Collection of Manuscripts of the 17th European Conference on Thermophysical Properties, ed. by L. Vozar, I. Medved, L. Kubicar, Bratislava, Slovakia, 2005, p. 219

  6. Millot F., Glorieux B., Rifflet J.C.: AIAA Prog. Astronaut. Aeronaut. 185, 777 (2000)

    Google Scholar 

  7. Gryvnak D.A., Burch D.E.: J. Opt. Soc. Am. 55, 625 (1965)

    Article  ADS  Google Scholar 

  8. Nelson L.S., Richardson N.L., Keil K., Skaggs S.R.: High Temp. Sci. 5, 138 (1973)

    Google Scholar 

  9. Abrevaya H., Nordine P.C.: J. Am. Ceram. Soc. 71, 546 (1988)

    Article  Google Scholar 

  10. Nason D.O., Yen C.T., Tiller W.A.: J. Cryst. Growth 106, 221 (1990)

    Article  ADS  Google Scholar 

  11. Mularz E.J., Yuen M.C.: J. Quant. Spectrosc. Radiat. Transfer 12, 1553 (1972)

    Article  ADS  Google Scholar 

  12. N.A. Rubtsov, A.A. Emelyanov, Experimental Investigation of Optical Properties of Alumina Particle Flow at High Temperatures (Institut teplofiziki SO AN SSSR, Novosibirsk, 1978) (Preprint No: 25-78)

  13. Rubtsov N.A., Emelyanov A.A., Ponomarev N.N.: Teplofiz. Vys. Temp. 22, 294 (1984)

    Google Scholar 

  14. N.A. Rubtsov, E.I. Averkov, A.A. Emelyanov, in Svoistva Teplovogo Izlucheniya Materialov v Kondensirovannom Sostoyanii (Institut teplofiziki SO AN SSSR, Novosibirsk, 1988), p. 270

  15. N.A. Anfimov, G.F. Karabadjak, B.A. Khmelinin, Yu.A. Plastinin, A.V. Rodionov, AIAA Paper 93-2818, in Presented at 28th Thermophysics Conference (AIAA, Orlando, 1993)

  16. Yu.A. Plastinin, H.Ph. Sipatchev, G.F. Karabadjak, B.A. Khmelinin, A.G. Khlebnikov, Yu.N. Shiskin, AIAA Paper 2000-0735, in Presented at 38th Aerospace Sciences Meeting & Exhibition (AIAA, Reno, 2000)

  17. Levi C.G., Jayaram V., Valencia J.J., Mehrabian R.: J. Mater. Res. 3, 969 (1988)

    Article  ADS  Google Scholar 

  18. Chase M.V. Jr., Davies C.A., Downey J.R. Jr., Fryrip D.J., McDonald R.A., Syverud A.H.: J. Phys. Chem. Ref. Data 14(Suppl. 1), 158 (1985)

    Google Scholar 

  19. Weber J.K.R., Krishnan S., Anderson C.D., Nordine P.C.: J. Am. Ceram. Soc. 78, 583 (1995)

    Article  Google Scholar 

  20. Weber J.K.R., Nordine P.C., Krishnan S.: J. Am. Ceram. Soc. 78, 3067 (1995)

    Article  Google Scholar 

  21. Noguchi T., Kozuka T.: Sol. Energy 10, 203 (1966)

    Article  Google Scholar 

  22. Bober M., Karow H.U., Muller K.: High Temp. High Press. 12, 161 (1980)

    Google Scholar 

  23. Kirillin A.V., Kostanovskii A.V., Vinogradov V.L.: High Temp. High Press. 19, 473 (1987)

    Google Scholar 

  24. Akopov F.A., Val’yano G.E., Vorob’ev A.Yu., Mineev V.N., Petrov V.A., Chernyshev A.P., Chernyshov G.P.: High Temp. 39, 244 (2001)

    Article  Google Scholar 

  25. Vorob’ev A.Yu., Petrov V.A., Titov V.E., Chernyshev A.P.: High Temp. 45, 13 (2007)

    Article  Google Scholar 

  26. Krayushkin S.V., Parfinovich A.F., Petrov V.A., Svet D.Ya., Chernyshev A.P.: Teplofiz. Vys. Temp. 24, 125 (1986)

    Google Scholar 

  27. Lingart Yu.K., Petrov V.A., Tikhonova N.A.: Teplofiz. Vys. Temp. 20, 1085 (1982)

    Google Scholar 

  28. Petrov V.A., Titov V.E., Vorobyev A.Yu.: High Temp. High Press. 31, 267 (1999)

    Article  Google Scholar 

  29. Landron C., Soper A.K., Jenkins T.E., Greaves G.N., Hennet L., Coutures J.P.: J. Non-Cryst. Solids 293–295, 453 (2001)

    Article  Google Scholar 

  30. K.S. Bagdasarov, Visokotemperaturnaya Kristallizatsiya iz Rasplava (Fizmatlit, Moskva, 2004), pp. 21–28

  31. Coutures J.-P., Rifflet J.-Cl., Florian P., Massiot D.: Rev. Int. Hautes Temp. Refract., Fr. 29, 123 (1994)

    Google Scholar 

  32. Y. Waseda, K. Sugiyama, J.M. Toguri, Z. Naturforsch. 50a, 770 (1995)

    Google Scholar 

  33. Ansell S., Krishnan S., Weber J.K.R., Felten J.J., Nordine P.C.: Phys. Rev. Lett. 78, 464 (1997)

    Article  ADS  Google Scholar 

  34. Landron C., Hennet L., Thiaudiere D.: Anal. Sci. 17(Suppl)., i165 (2001)

    Google Scholar 

  35. Landron C., Hennet L., Jenkins T.E., Greaves G.N., Coutures J.P., Soper A.K.: Phys. Rev. Lett. 86, 4839 (2001)

    Article  ADS  Google Scholar 

  36. San Miguel M.A., Fernandes J., Alvares L.J., Ordiozola J.A.: Phys. Rev. B 58, 2369 (1998)

    Article  ADS  Google Scholar 

  37. Gutierres G., Belonoshko A.B., Ahuja R., Johansson B.: Phys. Rev. E 61, 2723 (2000)

    Article  ADS  Google Scholar 

  38. Ahuja R., Osorio-Guillen J.M., Souzade Almeida J., Holm B., Ching W.Y., Johansson B.: J. Phys.: Condens. Matter 16, 2891 (2004)

    Article  ADS  Google Scholar 

  39. Krishnan S., Price D.L.: J. Phys.: Condens. Matter 12, R145 (2000)

    Article  ADS  Google Scholar 

  40. Petrov V.A., Vorobyev A.Y., Chernyshev A.P.: High Temp. High Press. 34, 657 (2002)

    Article  Google Scholar 

  41. Akopov F.A., Val’yano G.E., Vorob’ev A.Yu., Mineev V.N., Petrov V.A., Chernyshev A.P., Chernyshev G.P.: High Temp. 39, 244 (2001)

    Article  Google Scholar 

  42. Petrov V.A., Chernyshev A.P.: High Temp. 37, 58 (1999)

    Google Scholar 

  43. Vorob’ev A.Yu., Petrov V.A., Titov V.E., Chernyshev A.P.: Teplofiz. Vys. Temp. 30, 281 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim A. Petrov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrov, V.A. Abrupt Increase of the Absorption Coefficient of Alumina at Melting by Laser Radiation and Its Decrease at Solidification. Int J Thermophys 30, 1938–1959 (2009). https://doi.org/10.1007/s10765-009-0678-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0678-z

Keywords

Navigation