Skip to main content
Log in

Stability and Dynamics of Regular Thin-Shell Gravastars

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper explores the stable and dynamical configuration of thin-shell gravastars developed from the matching of exterior (Hayward and Hayward anti-de Sitter black holes) and interior (de Sitter) spacetimes. These spacetimes are connected at a thin-shell by considering Visser cut and paste technique. The matter surface energy density and pressure are formulated from the Lanczos equations. We consider the shaded regions to discuss the stability of gravastars by using radial perturbation at the equilibrium shell radius. We then observe thin-shell dynamics with massless as well as massive scalar field through equations of motion and Klein-Gordon equations. The respective scalar thin-shell represents collapse and expansion of the developed structure with the shell radius, velocity and effective potential. We conclude that stable regions of gravastar shell decrease and dynamical configuration (collapse and expansion) increase with cosmological constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. J. M. Bardeen, in Proceedings of GR5 (Tiflis, USSR, 1968), p. 174.

  2. E. Ayón-Beato and A. García, Phys. Rev. Lett. 80, 5056 (1998);

    Article  ADS  Google Scholar 

  3. Gen. Rel. Grav. 629, 31 (1999);

  4. Phys. Lett. B 25, 464 (1999);

  5. Phys. Lett. B 149, 493 (2000).

  6. S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006).

    Article  ADS  Google Scholar 

  7. M. Wen-Juan, C. Rong-Gen, and S. Ru-Keng, Commun. Theor. Phys. 46, 453 (2006).

    Article  ADS  Google Scholar 

  8. Z. Y. Fan and X. Wang, Phys. Rev. D 94, 124027 (2016);

    Article  ADS  MathSciNet  Google Scholar 

  9. Z. Y. Fan, Eur. Phys. J. C 77, 266 (2017).

    Article  ADS  Google Scholar 

  10. S. Fernando, Int. J. Mod. Phys. D 26, 07 (2017).

  11. P. Mazur and E. Mottola, arXiv: gr-qc/0109035; Proc. Natl. Acad. Sci. U. S. A. 101, 9545 (2004).

    Article  ADS  Google Scholar 

  12. W. Israel, Nuovo Cim. B 44, 1 (1966).

    Article  ADS  Google Scholar 

  13. M. Visser, S. Kar, and N. Dadhich, Phys. Rev. Lett. 90, 201102 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  14. S. H. Mazharimousavi, M. Halilsoy, and Z. Amirabi, Phys. Rev. D 81, 104002 (2010).

    Article  ADS  Google Scholar 

  15. F. Rahaman, S. Ray, A. K. Jafry, and K. Chakraborty, Phys. Rev. D 82, 104055 (2010).

    Article  ADS  Google Scholar 

  16. M. Sharif and M. Azam, Eur. Phys. J. C 73, 2407 (2013).

    Article  ADS  Google Scholar 

  17. M. Sharif and F. Javed, Gen. Rel. Grav. 48, 158 (2016).

    Article  ADS  Google Scholar 

  18. S. D. Forghani, S. Habib Mazharimousavi, and M. Halilsoy, Eur. Phys. J. C 78, 469 (2018).

    Article  ADS  Google Scholar 

  19. M. Sharif and F. Javed, Astrophys. Space Sci. 364, 179 (2019);

    Article  ADS  Google Scholar 

  20. Chin. J. Phys. 61, 262 (2019);

  21. Int. J. Mod. Phys. D 29, 2050007 (2020).

  22. M. Sharif, S. Mumtaz, and F. Javed, Int. J. Mod. Phys. A 35, 2050030 (2020).

    Article  ADS  Google Scholar 

  23. M. Visser and D. L. Wiltshire, Class. Quantum Grav. 21, 1135 (2004).

    Article  ADS  Google Scholar 

  24. B. M. N. Carter, Class. Quantum Grav. 22, 4551 (2005).

    Article  ADS  Google Scholar 

  25. D. Horvat, S. Ilijic, and A. Marunovic, Class. Quantum Grav. 26, 025003 (2009).

    Article  ADS  Google Scholar 

  26. Usmani et al., Phys. Lett. B 701, 388 (2011).

    Article  ADS  Google Scholar 

  27. A. Banerjee, F. Rahaman, S. Islam, and M. Govender, Eur. Phys. J. C 76, 34 (2016).

    Article  ADS  Google Scholar 

  28. P. Rocha, R. Chan, da M. F. A. Silva, and A. Wang, J. Cosmol. Astropart. Phys. 2008, 010 (2008);

  29. R. Chan, M. F. A. da Silva, P. Rocha, and A. Wang, J. Cosmol. Astropart. Phys. 2009, 10 (2009);

    Article  ADS  Google Scholar 

  30. J. Cosmol. Astropart. Phys. 2011, 13 (2011).

  31. D. Horvat, S. Ilijic, and A. Marunovic, Class. Quantum Grav. 28, 195008 (2011).

    Article  ADS  Google Scholar 

  32. F. Rahaman, A. A. Usmani, S. Ray, and S. Islam, Phys. Lett. B 707, 319 (2012);

    Article  ADS  MathSciNet  Google Scholar 

  33. Phys. Lett. B 717, 1 (2012).

  34. F. S. N. Lobo, and R. Garattini, J. High Energy Phys. 1312, 065 (2013).

  35. A. Övgün, A. Banerjee, and K. Jusufi, Eur. Phys. J. C 77, 566 (2017).

    Article  ADS  Google Scholar 

  36. M. Sharif and F. Javed, Ann. Phys. 415, 168124 (2020).

    Article  Google Scholar 

  37. J. A. Wheeler, Phys. Rev. 97, 511 (1955);

    Article  ADS  MathSciNet  Google Scholar 

  38. D. R. Brill and J. A. Wheeler, Phys. Rev. 105, 1662 (1957).

    Article  MathSciNet  Google Scholar 

  39. Q. Bergmann and R. Leipnik, Phys. Rev. 107, 1157 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  40. D. J. Kaup, Phys. Rev. 172, 1331 (1968).

    Article  ADS  Google Scholar 

  41. E. Seidel and W. Suen, Phys. Rev. D 42, 384 (1990).

    Article  ADS  Google Scholar 

  42. M. W. Choptuik, Phys. Rev. Lett. 70, 9 (1993);

    Article  ADS  Google Scholar 

  43. C. R. Evans and J. S. Coleman, Phys. Rev. Lett. 72, 1782 (1994);

    Article  ADS  Google Scholar 

  44. D. Christodoulou, Ann. Math. 140, 607 (1994);

    Article  MathSciNet  Google Scholar 

  45. E. Malec, Class. Quantum Grav. 13, 1849 (1995);

    Article  ADS  Google Scholar 

  46. C. Gundlach, Phys. Rev. Lett. 75, 3214 (1995);

    Article  ADS  MathSciNet  Google Scholar 

  47. P. R. Bardy, Class. Quantum Grav. 11, 1255 (1996).

    Article  ADS  Google Scholar 

  48. D. Núñez, H. Quevedo, and M. Salgado, Phys. Rev. D 58, 083506 (1998).

    Article  ADS  Google Scholar 

  49. M. Sharif and G. Abbas, Gen. Relativ. Grav. 44, 2353 (2012).

    Article  ADS  Google Scholar 

  50. M. Sharif and S. Iftikhar, Astrophys. Space Sci. 356, 89 (2015).

    Article  ADS  Google Scholar 

  51. M. Sharif and F. Javed, Int. J. Mod. Phys. D 28, 1950046 (2019);

    Article  ADS  Google Scholar 

  52. Ann. Phys. 407, 198 (2019);

  53. Mod. Phys. Lett. A 35, 1950350 (2019);

  54. Ann. Phys. 416, 168146 (2020).

  55. G. Abbas and M. R. Shahzad, Int. J. Mod. Phys. A 35, 2050028 (2020).

    Article  ADS  Google Scholar 

  56. F. Rahaman, A. Banerjee, and I. Radinschi, Int. J. Theor. Phys. 52, 2943 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of us (FJ) would like to thank the Higher Education Commission, Islamabad, for its financial support through 6748/Punjab/NRPU/RD/HEC/2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Sharif or Faisal Javed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Faisal Javed Stability and Dynamics of Regular Thin-Shell Gravastars. J. Exp. Theor. Phys. 132, 381–393 (2021). https://doi.org/10.1134/S1063776121030109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121030109

Navigation