Skip to main content
Log in

Decorated Ising Chain in a Magnetic Field

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Kramers–Wannier transfer matrix method is generalized to an arbitrary decoration number of the Ising chain. An exact analytical expression is obtained for the largest eigenvalue of the transfer matrix of a decorated Ising chain in the presence of an external magnetic field. Frustration points and the values of frustration magnetic fields are found that depend on the magnitudes and signs of exchange interactions. Exact expressions are obtained for zero-temperature entropies and zero-temperature magnetizations of the model under consideration. Magnetic phase diagrams of the ground state of the system are constructed for decoration values of d = 1 and d = 2, including those in the absence of a magnetic field. A comparison is made with a decorated square lattice not only in the absence but also in the presence of a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. E. Ising, Z. Phys. 21, 253 (1925).

    Article  ADS  Google Scholar 

  2. R. Peierls, Math. Proc. Cambridge Phil. Soc. 32, 477 (1936).

    Article  ADS  Google Scholar 

  3. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  ADS  MathSciNet  Google Scholar 

  4. G. H. Wannier, Phys. Rev. 79, 357 (1950).

    Article  ADS  MathSciNet  Google Scholar 

  5. R. M. F. Houtappel, Prog. Theor. Phys. 16, 425 (1950).

    MathSciNet  Google Scholar 

  6. K. Kanô and S. Naya, Prog. Theor. Phys. 10, 158 (1953).

    Article  ADS  Google Scholar 

  7. E. S. Tsuvarev, F. A. Kassan-Ogly, and A. I. Proshkin, J. Phys.: Conf. Ser. 1389, 012008 (2019).

    Google Scholar 

  8. H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941).

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Jaščur, V. Štubňa, K. Szałowskib, and T. Balcerzak, J. Magn. Magn. Mater. 417, 92 (2016).

    Article  ADS  Google Scholar 

  10. I. Syozi, Prog. Theor. Phys. 35, 306 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. E. Fisher, Phys. Rev. 113, 969 (1958).

    Article  ADS  Google Scholar 

  12. I. Syozi, Phase Transitions and Critical Phenomena, Ed. by C. Domb and M. S. Green (Academic, New York, 1972), Vol. 1.

    Google Scholar 

  13. F. R. Gantmakher, Matrix Theory (Nauka, Moscow, 1966; Chelsea, New York, 1960).

  14. E. S. Tsuvarev, F. A. Kassan-Ogly, and A. I. Proshkin, J. Exp. Theor. Phys. 131, 447 (2020).

    Article  ADS  Google Scholar 

  15. G. Toulouse, Comm. Phys. 2, 115 (1977).

    Google Scholar 

  16. J. Vannimenus and G. Toulouse, J. Phys. C: Solid State Phys. 10, L537 (1977).

    Article  ADS  Google Scholar 

  17. A. V. Zarubin, F. A. Kassan-Ogly, A. I. Proshkin, and A. E. Shestakov, J. Exp. Theor. Phys. 128, 778 (2019).

    Article  Google Scholar 

  18. F. A. Kassan-Ogly and A. I. Proshkin, Phys. Met. Metallogr. 120, 1359 (2019).

    Article  ADS  Google Scholar 

  19. A. I. Proshkin and F. A. Kassan-Ogly, Phys. Met. Metallogr. 120, 1366 (2019).

    Article  ADS  Google Scholar 

  20. F. A. Kassan-Ogly, A. I. Proshkin, A. K. Murtazaev, and V. A. Mutailamov, Phys. Solid State 62, 770 (2020).

    Article  ADS  Google Scholar 

  21. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).

    Article  ADS  Google Scholar 

  22. F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001).

    Article  ADS  Google Scholar 

  23. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products (Nauka, Moscow, 1971; Academic, New York, 1980).

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation within the state assignment (projects “Kvant,” no. AAAA-A18-118020190095-4, and “Splavy,” no. AAAA-A19-119070890020-3) and in part by the Ural Branch of the Russian Academy of Sciences (project no. 18-2-2-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. S. Tsuvarev or F. A. Kassan-Ogly.

Additional information

Translated by I. Nikitin

APPENDIX

APPENDIX

To take the integral in (32), we apply the following formula [23]:

$$\int\limits_0^\pi {\ln (a + b\cos \phi )d\phi = \pi \ln \frac{{a + \sqrt {{{a}^{2}} - {{b}^{2}}} }}{2}.} $$
(A.1)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuvarev, E.S., Kassan-Ogly, F.A. Decorated Ising Chain in a Magnetic Field. J. Exp. Theor. Phys. 131, 976–987 (2020). https://doi.org/10.1134/S1063776120120122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120120122

Navigation