Skip to main content
Log in

Resonant Electron Capture by Ions into Rydberg States of Atoms

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Resonant mechanisms of electron–ion recombination accompanied by the formation of Rydberg atoms in a plasma containing atomic and molecular ions are investigated. An analytical approach is developed for the description of three-particle electron capture into a Rydberg state as a result of resonant energy transfer from a free electron to the electronic shell of a quasimolecular ion formed during the collision of an atomic ion with a buffer gas atom. An efficient method is proposed to calculate dissociative recombination rates under thermal excitation of all rotational–vibrational (rovibrational) levels of the molecular ion. The dependence of the cross sections and the rate constants of the processes on the principal quantum number is established, and the relative role of these processes is determined in a wide range of temperatures of the electron, Te, and gas, T, components of the plasma. Conditions are found under which integral contributions of the continuous spectrum of the molecule and of the whole rovibrational quasicontinuum to the total rate of resonant electron capture are dominant. A specific analysis is carried out by an example of Ne + Xe+ + e and Ar + Xe+ + e heteronuclear systems with significantly different dissociation energies (D0 = 33 and 171 meV) of the ground electronic term of the RgXe+ (Rg = Ne and Ar) ion. It is shown that the capture rate constants essentially depend on the binding energy |εn| of the resulting Xe(n) atom, the temperatures T and Te, and the relationship between D0 and the thermal energy kBT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1981).

  2. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of a Nonequilibrium Low-Temperature Plasma (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  3. A. V. Eletskii and B. M. Smirnov, Sov. Phys. Usp. 25, 13 (1982).

    Article  ADS  Google Scholar 

  4. M. R. Flannery, in Springer Handbooks of Atomic, Molecular, and Optical Physics, Ed. by G. W. F. Drake (Springer, New York, 2006), Part D, Chap. 54, p. 799.

  5. V. A. Ivanov, A. S. Petrovskaya, and Yu. E. Skoblo, JETP 128, 767 (2019).

    Article  Google Scholar 

  6. M. Larsson and A. E. Orel, Dissociative Recombination of Molecular Ions (Cambridge Univ. Press, Cambridge, 2008).

    Book  Google Scholar 

  7. V. S. Lebedev and V. S. Marchenko, J. Sov. Laser Res. 7, 489 (1986).

    Article  Google Scholar 

  8. V. S. Lebedev and V. S. Marchenko, Sov. Phys. JETP 57, 946 (1983).

    Google Scholar 

  9. V. S. Lebedev and V. S. Marchenko, Khim. Fiz. 3, 210 (1984).

  10. A. A. Mihajlov, M. S. Dimitrijević, and Z. Djurić, Phys. Scr. 53, 159 (1996).

    Article  ADS  Google Scholar 

  11. A. A. Mihajlov, Lj. M. Ignjatović, M. M. Vasilijević, et al., Astron. Astrophys. 324, 1206 (1997).

    ADS  Google Scholar 

  12. A. A. Mihajlov, Lj. M. Ignjatović, M. S. Dimitrijević, et al., Astrophys. J. Suppl. Ser. 147, 369 (2003).

    Article  ADS  Google Scholar 

  13. R. K. Janev and A. A. Mihajlov, Phys. Rev. A 21, 819 (1980).

    Article  ADS  Google Scholar 

  14. V. S. Lebedev, J. Phys. B: At. Mol. Opt. Phys. 24, 1993 (1991).

    Article  ADS  Google Scholar 

  15. V. S. Lebedev, J. Phys. B: At. Mol. Opt. Phys. 24, 1977 (1991).

    Article  ADS  Google Scholar 

  16. A. A. Mihajlov, Lj. M. Ignjatović, and M. S. Dimitrijević, Astron. Astrophys. 437, 1023 (2005).

    Article  ADS  Google Scholar 

  17. V. A. Ivanov, V. S. Lebedev, and V. S. Marchenko, Sov. Phys. JETP 67, 2225 (1988).

    Google Scholar 

  18. Rydberg States of Atoms and Molecules, Ed. by R. Stebbings and F. Dunning (Cambridge Univ., Cambridge, 1983; Mir, Moscow, 1985).

  19. V. S. Lebedev and I. I. Fabrikant, Phys. Rev. A 54, 2888 (1996).

    Article  ADS  Google Scholar 

  20. V. S. Lebedev and I. I. Fabrikant, J. Phys. B: At. Mol. Opt. Phys. 30, 2649 (1997).

    Article  ADS  Google Scholar 

  21. V. S. Lebedev, K. S. Kislov, and A. A. Narits, JETP Lett. 108, 582 (2018).

    Article  ADS  Google Scholar 

  22. L. A. Viehland, B. R. Gray, and T. G. Wright, Mol. Phys. 107, 2127 (2009).

    Article  ADS  Google Scholar 

  23. L. A. Viehland, B. R. Gray, and T. G. Wright, Mol. Phys. 108, 547 (2010).

    Article  ADS  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2005; Pergamon, New York, 1977).

  25. V. S. Lebedev, Collision Processes of Highly Excited Atoms with Neutral Particles (Cambridge Sci., Cambridge, 2004).

    Google Scholar 

  26. V. L. Sukhorukov, I. D. Petrov, M. Schäfer, et al., J. Phys. B: At. Mol. Opt. Phys. 45, 092001 (2012).

    Article  ADS  Google Scholar 

  27. M. J. Seaton, Comput. Phys. Commun. 146, 225 (2002).

    Article  ADS  Google Scholar 

  28. A. Belasri and Z. Harrache, Plasma Chem. Plasma Process. 31, 787 (2011).

    Article  Google Scholar 

  29. O. B. Postel and M. A. Cappelli, Appl. Phys. Lett. 76, 544 (2000).

    Article  ADS  Google Scholar 

  30. S. V. Avtaeva and E. B. Kulumbaev, Plasma Phys. Rep. 35, 329 (2009).

    Article  ADS  Google Scholar 

  31. A. R. Hoskinson, J. Gregorío, J. Hopwood, et al., J. Appl. Phys. 119, 233301 (2016).

    Article  ADS  Google Scholar 

  32. P. Tian and M. J. Kushner, Plasma Sources Sci. Technol. 24, 034017 (2015).

    Article  ADS  Google Scholar 

  33. J. N. Bardsley and M. A. Biondi, Adv. At. Mol. Phys. 6, 1 (1970).

    Article  ADS  Google Scholar 

  34. J. N. Bardsley, Phys. Rev. A 2, 1359 (1970).

    Article  ADS  Google Scholar 

  35. L. Levin, S. Moody, E. Klosterman, et al., IEEE J. Quant. Electron. 17, 2282 (1981).

    Article  ADS  Google Scholar 

  36. M. Ohwa, T. J. Moratz, and M. J. Kushner, J. Appl. Phys. 66, 5131 (1989).

    Article  ADS  Google Scholar 

  37. J. Royal and A. E. Orel, Phys. Rev. A 73, 0427061 (2006).

  38. S.-J. Park, C. M. Herring, A. E. Mironov, et al., APL Photon. 2, 041302 (2017).

    Article  ADS  Google Scholar 

  39. B. Schütte, F. Campi, M. Arbeiter, et al., Phys. Rev. Lett. 112, 253401 (2014).

    Article  ADS  Google Scholar 

  40. J. P. Apruzese, J. L. Giuliani, M. F. Wolford, et al., J. Appl. Phys. 104, 013101 (2008).

    Article  ADS  Google Scholar 

  41. A. P. Mineev, A. P. Drozdov, S. M. Nefedov, et al., Quantum Electron. 42, 575 (2012).

    Article  ADS  Google Scholar 

  42. C. Qu, P. Tian, A. Semnani, and M. J. Kushner, Plasma Sources Sci. Technol. 26, 105006 (2017).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 19-79-30086.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Lebedev.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, V.S., Kislov, K.S. & Narits, A.A. Resonant Electron Capture by Ions into Rydberg States of Atoms. J. Exp. Theor. Phys. 130, 483–498 (2020). https://doi.org/10.1134/S1063776120030152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120030152

Navigation