Skip to main content
Log in

Collisional and radiative processes with participation of highly excited states of atoms and molecules

  • Published:
Journal of Soviet Laser Research Aims and scope

Abstract

A number of processes in which highly excited states of atoms and molecules participate are investigated. These processes are of interest for the kinetics of a low-temperature plasma, for atomic and molecular spectroscopy, and for astrophysics. A quasiclassical theory is developed for transitions between Rydberg states with change of the principal quantum number, and also for the processes of direct and associative ionization of highly excited atoms, which result from collisions between a neutral particle and its atomic core. The state of the inner electrons of a quasimolecular (molecular) ion is not altered by transitions of the outer electrons. Specific calculations are carried out for the case of the collision of hydrogen H(n) with helium He (1s2) atoms. It is shown that the cross sections and the rate constants of these processes are determined in this case by the mechanism investigated in the paper, and not by scattering of the Rydberg electron by the neutral particle. The cross sections for dipole excitation and dissociation of molecular ions from high vibrational energy levels by electron impact is calculated in the Born-Coulomb approximation. The cross sections and the rates of dissociative and three-particle attachment of electrons to ions are determined. The processes of autoionization and autodissociation decay of Rydberg states of vibrationally excited molecules are determined. Also investigated are radiative transitions near the dissociation limit of diatomic molecular ions and neutral molecules, viz., photodissociation and radiative decay of high vibrational levels, and photodissociation and translational (inverse-bremsstrahlung) absorption in collision of atomic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. T. Carrington and D. Garvin, “Formation of excited particles in chemical kinetics,” in: Excited Particles in Chemical Kinetics [Russian translation], Mir, Moscow (1973), p. 164.

    Google Scholar 

  2. B. M. Smirnov and G. V. Shlaypnikov, “Radiative transitions in a molecular gas,” in: Plasma Chemistry [in Russian], No. 3, Atomizdat, Moscow (1976), pp. 130–188.

    Google Scholar 

  3. V. S. Letokhov and A. A. Makarov, “Polyatomic molecules in a strong infrared field,” Usp. Fiz. Nauk,134, No. 1, 45–91 (1981).

    Google Scholar 

  4. J. D. Poll and J. van Kranendonk, “Theory of translational absorption in gases,” Can. J. Phys.,39, 189–204 (1961).

    Google Scholar 

  5. O. Tanimoto, “Band shape of the collision-induced infrated absorption by rare gas mixtures,” Progr. Theor. Phys.,33, No. 4, 585–599 (1965).

    Google Scholar 

  6. G. V. Shlaypnikov and I. P. Shamtov, “Translational radiative transitions in collisions of atoms,” Zh. Eksp. Teor. Fiz.,79, No. 6, 2078–2086 (1980).

    Google Scholar 

  7. H. S. Heaps and G. Herzberg, “Intensity distribution in the rotation-vibration spectrum of the OH molecule,” Z. Phys.,133, No. 1, 48–64 (1952).

    Google Scholar 

  8. S. S. Penner, Quantitative Molecular Spectroscopy and Gas Emissivities, Addison-Wesley, Reading, Mass. (1959).

  9. J. A. Gallas, “Some matrix elements for Morse oscillators,” Phys. Rev.,A21, No. 6, 1829–1834 (1980).

    Google Scholar 

  10. G. A. Askar'yan, “Strong excitation and dissociation of molecules in an intense optical field,” Zh. Eksp. Teor. Fiz.,48, No. 2, 666–672 (1965).

    Google Scholar 

  11. V. A. Kochlap and Yu. A. Kukibnyi, “Theory of high-pressure infrared laser,” Opt. Spektrosk.,34, No. 2, 328–336 (1973).

    Google Scholar 

  12. K. K. Datta, S. Saha, and A. K. Barua, “Photodissociation of HD+ by electronic and vibrational excitation,” Ind. J. Phys.,51A, No. 3, 215–219 (1977).

    Google Scholar 

  13. S. Saha, K. K. Datta, and A. K. Barua, “Photodissociation of HeH+ by both electronic and vibrational transitions,” J. Phys.,B11, No. 19, 3349–3356 (1978).

    Google Scholar 

  14. M. I. Sobel'man, Introduction to the Theory of Atomic Spectra, Pergamon, Oxford, (1973).

    Google Scholar 

  15. L. D. Landau, Collected Works [in Russian], Vol. 1, Nauka, Moscow (1969), pp. 149–155, 187–191.

    Google Scholar 

  16. E. E. Nikitin, “Calculation of the probability of vibrational excitation of molecules by collisions,” Opt. Spektrosk.,6, No. 2, 141–145 (1959).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press.

  18. M. M. Madsen and J. M. Peak, “Eigenparameters for the lowest twenty electronic states of the hydrogen molecule ion,” Atom. Data,2, No. 3, 171–204 (1971).

    Google Scholar 

  19. H. H. Michels, “Molecular orbital studies of the ground and low-lying excited states of HeH+ molecular ion,” J. Chem. Phys.,44, No. 10, 3834–3870 (1966).

    Google Scholar 

  20. T. A. Green, H. H. Michels, J. C. Browne, and M. M. Madsen, “Configuration interaction studies of the HeH+ molecular ion. I. Singlet sigma states,”ibid.,61, No. 12, 5186–5197 (1974).

    Google Scholar 

  21. P. D. Dacre, C. J. Watts, C. R. Williams, Jr., and R. McWeeny, “Molecular MCSCF calculations by direct minimization. I. The single excitation MCSCF method,” Mol. Phys.,30, No. 4, 1203–1211 (1975).

    Google Scholar 

  22. V. S. Lebedev and V. S. Marchenko, “Radiative transitions near the dissociation limit of diatomic molecules and molecular ions,” Khim. Fiz., No.12, 1589–1602 (1982).

    Google Scholar 

  23. L. P. Pitaevskii, “Recombination of electrons in a monoatomic gas,” Zh. Eksp. Teor. Fiz.,42, No. 5, 1326–1329 (1962).

    Google Scholar 

  24. D. R. Bates and S. P. Khare, “Recombination of positive ions and electrons in dense neutral gas,” Proc. Phys. Soc.,85, Pt. 2, No. 544, 231–243 (1965).

    Google Scholar 

  25. M. R. Flannery, “Semiquantal theory of heavy-particle excitation, deexcitation, and ionization by neutral atoms,” Ann. Phys. (N.Y.),61, No. 2, 465–487 (1970).

    Google Scholar 

  26. B. M. Smirnov, Ions and Excited Atoms in a Plasma [in Russian], Atomizdat, Moscow (1974), pp. 422–424.

    Google Scholar 

  27. M. Matsuzawa, “Ionization of long-lived highly excited atoms by collisions with molecules,” J. Chem. Phys.,55, No. 6, 2685–2689 (1971).

    Google Scholar 

  28. M. Matsuzawa, “State changing collision of a high Rydberg atom with polar molecules,” Phys. Rev.,A20, 861–866 (1979).

    Google Scholar 

  29. B. M. Smirnov, “Highly excited states of atoms,” Usp. Fiz. Nauk,131, No. 4, 577–616 (1980).

    Google Scholar 

  30. V. A. Smirnov and A. A. Mikhailov, “Inelastic collisions of highly excited atoms,” Opt. Spektrosk.,30, No. 5, 964–986 (1971).

    Google Scholar 

  31. A. Z. Ddvdariani, A. N. Klyucharev, A. V. Lazarenko, and V. A. Sheverov, “Collisional ionization of Rydberg states of alkali atoms,” Pis'ma Zh. Tekh. Fiz.,4, No. 17, 1013–1016 (1978).

    Google Scholar 

  32. R. K. Janev and A. A. Mihajlov, “Excitation and deexcitation process in slow collisions of Rydberg atoms with ground state parent atoms,” Phys. Rev.,A20, 1890–1897 (1979).

    Google Scholar 

  33. R. K. Janev and A. A. Mihajlov, “Resonant ionization in slow-atom-Rydberg atom collisions,” Phys. Rev.,A21, No. 3, 819–826 (1980).

    Google Scholar 

  34. A. A. Mihajlov and R. K. Janev, “Ionization in atom-Rydberg atom collisions,” J. Phys.,B14, No. 10, 1639–1654 (1981).

    Google Scholar 

  35. E. L. Duman and I. P. Shmatov, “Ionization of highly excited atoms in their parent gas,” Zh. Eksp. Teor. Fiz.,78, No. 6, 2116–2125 (1980).

    Google Scholar 

  36. B. M. Smirnov, Asymptotic Methods in the theory of Atomic Collisions [in Russian], Atomizdat, Moscow (1973).

    Google Scholar 

  37. V. P. Zhdanov and M. I. Chibisov, “Penning ionization by nonmetastable atoms,” Zh. Eksp. Teor. Fiz.,70, No. 6, 2087–2097 (1976).

    Google Scholar 

  38. Yu. P. Korchevoi, “Effectiveness of associative ionization in cesium vapor as a function of the quantum states and thermal energy of the interacting atoms,”ibid.,75, No. 4, 1231–1242 (1978).

    Google Scholar 

  39. A. N. Klucharev, A. V. Lazarenko, and V. Vujnovic, “The ionization rate coefficient of radiatively excited rubidium atoms Rb(n2P)+Rb(52S),” J. Phys.,B 13 1143–1149 (1980).

    Google Scholar 

  40. K. Radler and J. Berkowitz, “Photoionization of argon at high resolution: Collisional processes leading to formation of Ar2+ and Ar,” J. Chem. Phys.,70, No. 1, 211–227 (1979).

    Google Scholar 

  41. V. S. Lebedev, V. S. Marchenko, and S. I. Yakovlenko, “Excitation and ionization of Rydberg states of an atom in a collision of a neutral particle with a core,” Izv. Akad. Nauk SSSR, Ser. Fiz.,45, No. 12, 2395–2400 (1981).

    Google Scholar 

  42. V. S. Lebedev and V. S. Marchenko, “Transitions between highly excited states of an atom when a neutral particle passes near its atomic core,” Zh. Eksp. Teor. Fiz.,84, 1623–1634 (1983).

    Google Scholar 

  43. V. S. Lebedev and V. S. Marchenko, “Direct and associative ionization of highly excited atom when a neutral particle passes near its atomic core,” Khim. Fiz.,3, no. 2, 210–223 (1984).

    Google Scholar 

  44. V. S. Smirnov, “Inelastic collisions of highly excited atoms with inert-gas atoms,” Opt. Spektrosk.,37, No. 3, 407–410 (1974).

    Google Scholar 

  45. A. P. Hickman, “The effect of core interactions in ℓ-mixing collisions of Rydberg atoms with rare gases,” J. Phys.,B14, L419–L424 (1981).

    Google Scholar 

  46. M. Matusuzawa “Comment on ‘Thermal collisions of Rydberg atoms with neutrals’,”ibid.-14, L553–L558 (1981).

    Google Scholar 

  47. V. P. Kaulakis “Theory of collisional transitions between Rydberg levels,: Noninertial mechanism,” Litov. Fiz. Sb.,22, No. 1, 3–12, (1982).

    Google Scholar 

  48. J. I. Gersten, “Theory of collisional angular-momentum mixing of Rydberg atoms,” Phys. Rev.,A14, No. 4, 1354–1357 (1976).

    Google Scholar 

  49. R. E. Olson, “Theoretical excitation transfer cross sections for Rydberg Na(n2D→n2F) transitions from collisions with He, Ne, and Ar,” Phys. Rev.,A15, No. 2, 631–634 (1977).

    Google Scholar 

  50. A. Omont, “On the theory of collisions of atoms in Rydberg states with neutral particles,” J. Phys. (France),38, 1343–1359 (1959).

    Google Scholar 

  51. J. Derouard and M. Lombardi, “Theoretical cross sections for collisional angular momentum transfer in atomic Rydberg states,” J. Phys.,B11, No. 22, 3875–3886 (1978).

    Google Scholar 

  52. A. P. Hickman, “Theory of angular momentum mixing in Rydberg atom-rare-gas collisions,” Phys. Rev.,A18, No. 4, 1339–1342 (1978).

    Google Scholar 

  53. M. Matsuzawa, “Thermal collisions between high-Rydberg atoms and rare-gas atoms,” J. Phys.,B12, No. 22, 3743–3761 (1979).

    Google Scholar 

  54. E. de Prunelé and J. Pascale, “Theoretical model for collision of high Rydberg atoms with neutral atoms and molecules,” ibid.B12, 2511–2528.

  55. Y. Hahn, “Thermal collisions of high Rydberg atoms with neutral particles. I: General theory and modified impulse approximation,”ibid.14, 985–996 (1981).

    Google Scholar 

  56. B. P. Kaulakis, “Theory of collisional transitions between atomic Rydberg levels: Adiabatic mechanism,” Litov. Fiz. Sb.,22, No. 5, (1982).

  57. T. F. Gallagher, S. A. Edelstein, and R. M. Hill, “Collisional angular-momentum mixing of Rydberg states of Na by He, Ne, and Ar,” Phys. Rev.,A15, 1945–1951 (1977).

    Google Scholar 

  58. T. F. Gallagher, R. E. Olson, W. E. Cooke, et al., “Collisional angular-momentum mixing of highly excited Na (n2D) states by Ne and CO,”ibid.16, No. 1, 441–442 (1977).

    Google Scholar 

  59. T. F. Gallagher, W. E. Cooke, and S. A. Edelstein, “Collisional angular momentum mixing of f-states of Na,”ibid.17, No. 3, 904–908 (1978).

    Google Scholar 

  60. F. Gounand, P. R. Fournier, and J. Berlande, “Collisional depopulation of Rydberg P states of rubidium at thermal energies,”ibid.15, No. 6, 2212–2220 (1977).

    Google Scholar 

  61. M. Hugon, F. Gounand, P. R. Fournier, and J. Berlande, “Collisional properties of highly excited rubidium atoms,” J. Phys.,B12, No. 16, 2707–2722 (1979).

    Google Scholar 

  62. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Nonrelativisitic Theory, Pergamon (1978).

  63. H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Systems, Springer-Verlag, Berlin (1958).

    Google Scholar 

  64. I. L. Beigman and L. A. Bureeva, “Transitions between highly excited levels,” Izv. Akad. Nauk SSSR, Ser. Fiz.,45, No. 12, 2277–2288 (1981).

    Google Scholar 

  65. L. A. Bureeva, “Quasiclassical approximation for oscillator strengths and effective cross sections of radiative transitions,” Astron. Zh.,45, No. 6, 1215–1221 (1968).

    Google Scholar 

  66. A. B. Migdal, Approximate Methods in Quantum Theory [in Russian], Nauka, Moscow (1979), pp. 85–93.

    Google Scholar 

  67. M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover, N.Y. (1964).

    Google Scholar 

  68. J. N. Beardley and M. A. Biondi, “Dissociative recombination,” Adv. Atom Mol. Phys.,6, 1–57 (1970).

    Google Scholar 

  69. A. V. Eletskii and B. M. Smirnov, “Dissociative recombination of electtron and molecular ion” Usp. Fiz. Nauk,136, No. 1, 25–59 (1982).

    Google Scholar 

  70. V. A. Ivanov and V. S. Sukhomlinov, “Properties of population of Ne levels of 2p54p configuration in dissociative recombination of Ne2 + molecular ions,” Zh. Tekh. Fiz.,52, No. 7, 1313–1317 (1982).

    Google Scholar 

  71. E. V. Ivash, “Dissociation of the hydrogen molecule ion by electron impact,” Phys. Rev.,112, 155–158 (1958).

    Google Scholar 

  72. R. F. Boikova and V. D. Ob"edkov, “Rotational and vibrational excitations of molecular ions by electrons,” Zh. Eksp. Teor. Fiz.,54, No. 5, 1439–1444 (1968).

    Google Scholar 

  73. Yu. D. Oksyuk, “Influence of vibrational excitation of molecular ions by electrons,” Opt. Spektrosk.,23, No. 3, 366–373 (1967).

    Google Scholar 

  74. J. M. Peek, “Theory of electron-H2 + dissociation collisions,” Zh. Eksp. Teor. Fiz.,A10, 539–549 (1974).

    Google Scholar 

  75. S. Saha, K. Mullick, and A. K. Barua “Effect of dipole moment on the collision induced dissociation of HD+ ion by electron impact,” J. Phys.,B5, 1369–1380 (1972).

    Google Scholar 

  76. D. R. Bates, “Dissociative recombination,” Phys. Rev.,78, No. 4, 492–493 (1950).

    Google Scholar 

  77. M. I. Chibisov and S. I. Yakovlenko, “Vibrational autoionization of molecule and recombination of nonsymmetric molecular ions,” Zh. Eksp. Teor. Fiz.,72, No. 1, 43–53 (1977).

    Google Scholar 

  78. K. R. Dastidar, M. Bose, and T. K. R. Dastidar, “Electron cooling through resonant collisions with H2 + molcular ion,” J. Phys. Soc. Jpn.,47, No. 6, 1955–1958 (1979).

    Google Scholar 

  79. V. P. Zhdanov and M. I. Chibisov, “Dissociative recombination of electrons in molecular ions H2 + and D2 + with formation of strongly excited atoms,” Zh. Eksp. Teor. Fiz.,74, No. 1, 75–85 (1978).

    Google Scholar 

  80. K. Alder, A. Bohr, T. Huus, et al., “Study of nuclear structure by electromagnetic excitation with accelerated ions,” Rev. Mod. Phys.,28, No. 4, 432–542 (1956).

    Google Scholar 

Download references

Authors

Additional information

Translated from Trudy Ordena Lenina Fizicheskogo Instituta im. P. Lebedeva AN SSSR, Vol. 145, pp. 80–130, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, V.S., Marchenko, V.S. Collisional and radiative processes with participation of highly excited states of atoms and molecules. J Russ Laser Res 7, 489–534 (1986). https://doi.org/10.1007/BF01120342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01120342

Keywords

Navigation