Skip to main content
Log in

Polaron model of a pseudogap state in quasi-one-dimensional systems

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A brief overview of the basic concepts and problems of the physics of quasi-one-dimensional (q1D) compounds is given. A consistent theoretical description of the nature of the so-called pseudogap state still remains the main problem. A simplified model of the pseudogap state based on the formation of smallradius polarons is considered within the cluster perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Bloch, Nat. Phys. 1, 23 (2005).

    Article  Google Scholar 

  2. E. Pazy and A. Vardi, Phys. Rev. A 72, 033609 (2005).

    Article  ADS  Google Scholar 

  3. U. Bissbort, D. Cocks, A. Negretti, Z. Idziaszek, T. Calarco, F. Schmidt-Kaler, W. Hofstetter, and R. Gerritsma, Phys. Rev. Lett. 111, 080501 (2013).

    Article  ADS  Google Scholar 

  4. M. Bruderer, A. Klein, S. R. Clark, and D. Jaksch, Phys. Rev. A 76, 011605(R) (2007).

    Article  ADS  Google Scholar 

  5. C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P. Massignan, G. M. Bruun, F. Schreck, and R. Grimm, Nature 485, 615 (2012).

    Article  ADS  Google Scholar 

  6. L. N. Bulaevskii, Sov. Phys. Usp. 18, 131 (1975).

    Article  ADS  Google Scholar 

  7. R. E. Peierls, Quantum Theory of Solids (Oxford Univ. Press, Oxford, 1955).

    MATH  Google Scholar 

  8. E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).

    Article  ADS  Google Scholar 

  9. N. F. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961).

    Article  ADS  Google Scholar 

  10. V. L. Berezinskii, Sov. Phys. JETP 38, 620 (1973).

    ADS  Google Scholar 

  11. V. Ya. Pokrovskii, S. G. Zybtsev, M. V. Nikitin, I. G. Gorlova, V. F. Nasretdinova, and S. V. Zaitsev-Zotov, Phys. Usp. 56, 29 (2013).

    Article  ADS  Google Scholar 

  12. S. V. Zaitsev-Zotov, Phys. Usp. 47, 533 (2004).

    Article  ADS  Google Scholar 

  13. M. Grioni, S. Pons, and E. Frantzeskakis, J. Phys.: Condens. Matter 21, 023201 (2009).

    ADS  Google Scholar 

  14. L. Perfetti, S. Mitrovic, G. Margaritondo, M. Grioni, L. Forro, L. Degiorgi, and H. Hochst, Phys. Rev. B 66, 075107 (2002).

    Article  ADS  Google Scholar 

  15. L. Perfetti, H. Berger, A. Reginelli, L. Degiorgi, H. Hochst, J. Voit, G. Margaritondo, and M. Grioni, Phys. Rev. Lett. 87, 216404 (2001).

    Article  ADS  Google Scholar 

  16. P. Monceau, Adv. Phys. 61, 325 (2012).

    Article  ADS  Google Scholar 

  17. F. Ya. Nad’ and M. E. Itkis, JETP Lett. 63, 262 (1996).

    Article  ADS  Google Scholar 

  18. K. Kim, R. H. McKenzie, and J. W. Wilkins, Phys. Rev. Lett. 71, 4015 (1993).

    Article  ADS  Google Scholar 

  19. S. Brown and A. Zettl, in Charge Density Waves in Solids, Vol. 25 of Modern Problems in Condensed Matter Science, Ed. by L. P. Gor’kov and G. Gruner (North-Holland, Amsterdam, 1989), p.223.

  20. G. Gruner, Density Waves in Solids (Addison-Wesley, Reading, MA, 1994).

    Google Scholar 

  21. P. A. Lee, T. M. Rice, and P. W. Anderson, Phys. Rev. Lett. 31, 462 (1973).

    Article  ADS  Google Scholar 

  22. R. Yusupov, T. Mertelj, V. V. Kabanov, S. Brazovskii, P. Kusar, J.-H. Chu, I. R. Fisher, and D. Mihailovic, Nat. Phys. 6, 681 (2010).

    Article  Google Scholar 

  23. D. Mou, R. M. Konik, A. M. Tsvelik, I. Zaliznyak, and X. Zhou, Phys. Rev. B 89, 201116(R) (2014).

    Article  ADS  Google Scholar 

  24. C. Tournier-Colletta, L. Moreschini, G. Autes, S. Moser, A. Crepaldi, H. Berger, A. L. Walter, K. S. Kim, A. Bostwick, P. Monceau, E. Rotenberg, O. V. Yazyev, and M. Grioni, Phys. Rev. Lett. 110, 236401 (2013).

    Article  ADS  Google Scholar 

  25. M. V. Sadovskii, Sov. Phys. JETP 39, 845 (1974).

    ADS  Google Scholar 

  26. M. V. Sadovskii, Sov. Phys. Solid State 16, 1632 (1974).

    Google Scholar 

  27. M. V. Sadovskii, Sov. Phys. JETP 50, 989 (1979).

    ADS  Google Scholar 

  28. J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. Lett. 80, 3839 (1998).

    Article  ADS  Google Scholar 

  29. J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. B 60, 667 (1999).

    Article  ADS  Google Scholar 

  30. E. Z. Kuchinskii and M. V. Sadovskii, J. Exp. Theor. Phys. 88, 968 (1999).

    Article  ADS  Google Scholar 

  31. S. A. Brazovskii, JETP Lett. 28, 606 (1978).

    ADS  Google Scholar 

  32. S. A. Brazovskii, I. E. Dzyaloshinskii, and S. P. Obukhov, Sov. Phys. JETP 45, 814 (1977).

    ADS  Google Scholar 

  33. I. G. Lang and Yu. A. Firsov, Sov. Phys. JETP 16, 1301 (1963).

    ADS  Google Scholar 

  34. N. Prokof’ev and B. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).

    Article  ADS  Google Scholar 

  35. A. Mishchenko, N. Prokof’ev, A. Sakamoto, and B. Svistunov, Phys. Rev. B 62, 6317 (2000).

    Article  ADS  Google Scholar 

  36. P. E. Kornilovitch, Phys. Rev. Lett. 81, 5382 (1998).

    Article  ADS  Google Scholar 

  37. A. S. Alexandrov, Phys. Rev. B 49, 9915 (1994).

    Article  ADS  Google Scholar 

  38. V. Cataudella, G. D. Filippis, and G. Iadonisi, Phys. Rev. B 62, 1496 (2000).

    Article  ADS  Google Scholar 

  39. E. Jeckelmann and S. R. White, Phys. Rev. B 57, 6367 (1998).

    ADS  Google Scholar 

  40. S. G. Ovchinnikov, V. A. Gavrichkov, M. M. Korshunov, and E. I. Shneyder, Springer Ser. Solid-State Sci. 171, 143 (2012).

    Article  Google Scholar 

  41. V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina, J. W. Allen, S.-K. Mo, H.-D. Kim, P. Metcalf, S. Suga, A. Sekiyama, G. Keller, I. Leonov, X. Ren, and D. Vollhardt, Phys. Rev. B 71, 125119 (2005).

    Article  ADS  Google Scholar 

  42. I. A. Makarov, E. I. Shneyder, P. A. Kozlov, and S. G. Ovchinnikov, Phys. Rev. B 92, 155143 (2015).

    Article  ADS  Google Scholar 

  43. S. G. Ovchinnikov and V. V. Val’kov, Hubbard Operators in the Theory of Strongly Correlated Electrons (Imperial College, London, Singapore, 2004).

    Book  MATH  Google Scholar 

  44. R. O. Zaitsev, Sov. Phys. JETP 43, 574 (1976).

    ADS  Google Scholar 

  45. D. Senechal, A.-M. Tremblay, and C. Bourbonnais, Theoretical Methods for Strongly Correlated Electrons (Springer, Berlin, Heidelberg, 2004).

    Book  Google Scholar 

  46. S. V. Nikolaev and S. G. Ovchinnikov, J. Exp. Theor. Phys. 111, 635 (2010).

    Article  ADS  Google Scholar 

  47. G. A. Sawatzky, Nature (London) 342, 480 (1989).

    Article  ADS  Google Scholar 

  48. G. D. Mahan, Many Particle Physics (Plenum, New York, 1990).

    Book  Google Scholar 

  49. D. C. Johnston, Phys. Rev. Lett. 52, 2049 (1984).

    Article  ADS  Google Scholar 

  50. D. S. Dessau, T. Saitoh, C.-H. Park, Z.-X. Shen, P. Villella, N. Hamada, Y. Moritomo, and Y. Tokura, Phys. Rev. Lett. 81, 192 (1998).

    Article  ADS  Google Scholar 

  51. N. Mannella, W. L. Yang, X. J. Zhou, H. Zheng, J. F. Mitchell, J. Zaanen, T. P. Devereaux, N. Nagaosa, Z. Hussain, and Z.-X. Shen, Nature 438, 474 (2005).

    Article  ADS  Google Scholar 

  52. D. S. Marshall, D. S. Dessau, A. G. Loeser, C.-H. Park, A. Y. Matsuura, J. N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W. E. Spicer, and Z.-X. Shen, Phys. Rev. Lett. 76, 4841 (1996).

    Article  ADS  Google Scholar 

  53. A. G. Loeser, Z.-X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, and A. Kapitulnik, Science 273, 325 (1996).

    Article  ADS  Google Scholar 

  54. H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Norman, T. Mochiku, K. Kadowaki, and J. Giapintzakis, Nature (London) 382, 51 (1996).

    Article  ADS  Google Scholar 

  55. Udai Raj Singh, S. Chaudhuri, R. C. Budhani, and Anjan K. Gupta, J. Phys.: Condens. Matter 21, 355001 (2009).

    Google Scholar 

  56. A. Bussmann-Holder, H. Keller, A. R. Bishop, A. Simon, and K. A. Muller, J. Supercond. Novel Magn. 21, 353 (2008).

    Article  Google Scholar 

  57. G. Sica, J. H. Samson, and A. S. Alexandrov, Europhys. Lett. 100, 37005 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Orlov.

Additional information

Original Russian Text © Yu.S. Orlov, V.A. Dudnikov, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 5, pp. 944–956.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, Y.S., Dudnikov, V.A. Polaron model of a pseudogap state in quasi-one-dimensional systems. J. Exp. Theor. Phys. 125, 798–809 (2017). https://doi.org/10.1134/S1063776117110103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117110103

Navigation