Skip to main content
Log in

Effect of magnetic field on beta processes in a relativistic moderately degenerate plasma

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of a magnetic field of arbitrary strength on the beta decay and crossing symmetric processes is analyzed. A covariant calculation technique is used to derive the expression for the squares of S-matrix elements of these reactions, which is also valid in reference frames in which the medium moves as a single whole along magnetic field lines. Simple analytic expressions obtained for the neutrino and antineutrino emissivities for a moderately degenerate plasma fully characterize the emissivity and absorbability of the studied medium. It is shown that the approximation used here is valid for core collapse supernovae and accretion disks around black holes; beta processes in these objects are predominantly neutrino reactions. The analytic expressions obtained for the emissivities can serve as a good approximation for describing the interaction of electron neutrinos and antineutrinos with the medium of the objects in question and hold for an arbitrary magnetic field strength. Due to their simplicity, these expressions can be included in the magnetohydrodynamic simulation of supernovae and accretion disks to calculate neutrino and antineutrino transport in them. The rates of beta processes and the energy and momentum emitted in them are calculated for an optically transparent matter. It is shown that the macroscopic momentum transferred in the medium increases linearly with the magnetic field strength and can substantially affect the dynamics of supernovae and accretion disks in the regions of a degenerate matter. It is also shown that the rates of beta processes and the energy emission for a magnetic field strength of B ≲ 1015 G typical of supernovae and accretion disks are lower than in the absence of field. This suppression is stronger for reactions with neutrinos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Kumar and B. Zhang, Phys. Rep. 561, 1 (2014).

    Article  ADS  Google Scholar 

  2. A. I. MacFadyen and S. E. Woosley, Astrophys. J. 524, 262 (1999).

    Article  ADS  Google Scholar 

  3. S. Rosswog, Int. J. Mod. Phys. D 24, 1530012 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  4. M. V. Barkov and S. S. Komissarov, Mon. Not. R. Astron. Soc. 401, 1644 (2010).

    Article  ADS  Google Scholar 

  5. S. W. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).

    Article  ADS  Google Scholar 

  6. S. G. Moiseenko and G. S. Bisnovatyi-Kogan, Astron. Rep. 59, 573 (2015).

    Article  ADS  Google Scholar 

  7. H. Sawai and S. Yamada, Astrophys. J. 817, 153 (2016).

    Article  ADS  Google Scholar 

  8. I. Zalamea and A. M. Beloborodov, Mon. Not. R. Astron. Soc. 410, 2302 (2011).

    Article  ADS  Google Scholar 

  9. L. I. Korovina, Izv. Vyssh. Uchebn. Zaved., Fiz. 6, 86 (1964).

    Google Scholar 

  10. L. Fassio-Canuto, Phys. Rev. 187, 2141 (1969).

  11. J. J. Matese and R. F. O’Connell, Phys. Rev. 180, 1289 (1969).

    Article  ADS  Google Scholar 

  12. A. I. Studenikin, Sov. J. Nucl. Phys. 49, 1031 (1989).

    Google Scholar 

  13. L. B. Leinson and A. Perez, J. High Energy Phys. 9, 020 (1998).

    Article  ADS  Google Scholar 

  14. A. A. Gvozdev and I. S. Ognev, JETP Lett. 69, 365 (1999).

    Article  ADS  Google Scholar 

  15. D. Baiko and D. Yakovlev, Astron. Astrophys. 342, 192 (1999).

    ADS  Google Scholar 

  16. D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P. Haensel, Phys. Rep. 354, 1 (2001).

    Article  ADS  Google Scholar 

  17. H. Duan and Y.-Z. Qian, Phys. Rev. D 72, 023005 (2005).

    Article  ADS  Google Scholar 

  18. V. L. Kauts, A. M. Savochkin, and A. I. Studenikin, Phys. At. Nucl. 69, 1453 (2006).

    Article  Google Scholar 

  19. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983), Chap. 2.

    Book  Google Scholar 

  20. G. G. Raffelt, Stars as Laboratories for Fundamental Physics (Univ. Chicago Press, Chicago, USA, 1996).

    Google Scholar 

  21. N. N. Chugai, Sov. Astron. Lett. 10, 87 (1984).

    ADS  Google Scholar 

  22. P. Arras and D. Lai, Phys. Rev. D 60, 043001 (1999).

    Article  ADS  Google Scholar 

  23. A. A. Sokolov and I. M. Ternov, The Relativistic Electron (Nauka, Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Pergamon, New York, 1977).

    Google Scholar 

  25. A. A. Gvozdev, I. S. Ognev, and E. V. Osokina, Neutrino Processes in External Magnetic Field in Density Matrix Engineering (Yarosl. Gos. Univ., Yaroslavl’, 2012) [in Russian].

    MATH  Google Scholar 

  26. A. A. Gvozdev and E. V. Osokina, Theor. Math. Phys. 170, 354 (2012).

    Article  MathSciNet  Google Scholar 

  27. H. Bauke, S. Ahrens, C. H. Keitel, and R. Grobe, New J. Phys. 16, 043012 (2014).

    Article  ADS  Google Scholar 

  28. K. Bhattacharya and P. B. Pal, Pramana 62, 1041 (2004).

    Article  ADS  Google Scholar 

  29. M. S. Andreev, N. V. Mikheev, and E. N. Narynskaya, J. Exp. Theor. Phys. 110, 227 (2010).

    Article  ADS  Google Scholar 

  30. E. Jahnke, F. Emde, and F. Lösch, Tables of Higher Functions (McGraw-Hill, New York, 1960).

    MATH  Google Scholar 

  31. K. Olive et al., Chin. Phys. C 38, 090001 (2014).

    Article  ADS  Google Scholar 

  32. A. D. Kaminker and D. G. Yakovlev, Teor. Mat. Fiz. 49, 248 (1981).

    Article  Google Scholar 

  33. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Rows. Supplementary Chapters (Nauka, Moscow, 1986) [in Russian].

    MATH  Google Scholar 

  34. E. Roulet, J. High Energy Phys. 1, 013 (1998).

    Article  ADS  Google Scholar 

  35. H. Duan and Y.-Z. Qian, Phys. Rev. D 69, 123004 (2004).

    Article  ADS  Google Scholar 

  36. H. A. Bethe and J. R. Wilson, Astrophys. J. 295, 14 (1985).

    Article  ADS  Google Scholar 

  37. R. Popham, S. E. Woosley, and C. Fryer, Astrophys. J. 518, 356 (1999).

    Article  ADS  Google Scholar 

  38. A. A. Gvozdev and I. S. Ognev, J. Exp. Theor. Phys. 94, 1043 (2002).

    Article  ADS  Google Scholar 

  39. O. Just, M. Obergaulinger, and H.-T. Janka, Mon. Not. R. Astron. Soc. 453, 3386 (2015).

    Article  ADS  Google Scholar 

  40. W.-X. Chen and A. M. Beloborodov, Astrophys. J. 657, 383 (2007).

    Article  ADS  Google Scholar 

  41. A. V. Kuznetsov and N. V. Mikheev, J. Exp. Theor. Phys. 91, 748 (2000).

    Article  ADS  Google Scholar 

  42. D. Lai and Y.-Z. Qian, Astrophys. J. 505, 844 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Ognev.

Additional information

Original Russian Text © I.S. Ognev, 2016, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 123, No. 4, pp. 744–770.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ognev, I.S. Effect of magnetic field on beta processes in a relativistic moderately degenerate plasma. J. Exp. Theor. Phys. 123, 643–665 (2016). https://doi.org/10.1134/S106377611610006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611610006X

Navigation