Skip to main content
Log in

Attractive Hubbard model with disorder and the generalized Anderson theorem

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flat densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T c for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T c (in the weak-coupling region) or significantly increase T c (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Eagles, Phys. Rev. 186, 456 (1969).

    Article  ADS  Google Scholar 

  2. A. J. Leggett, in: Modern Trends in the Theory of Condensed Matter, Ed. by A. Pekalski and J. Przystawa (Springer-Verlag, Berlin, 1980).

  3. P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).

    Article  ADS  Google Scholar 

  4. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  Google Scholar 

  5. L. P. Pitaevskii, Phys.—Usp. 49(4), 333 (2006).

    Article  ADS  Google Scholar 

  6. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 187 (1995).

    Article  ADS  Google Scholar 

  7. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  8. D. Vollhardt, in Lectures on the Physics of Strongly Correlated Systems XIV, Ed. by A. Avella and F. Mancini (American Institute of Physics, Melville, New York, 2010), AIP Conf. Proc. 1297, 339; D. Vollhardt, arXiv:1004.5069.

  9. M. Keller, W. Metzner, and U. Schollwock, Phys. Rev. Lett. 86, 4612 (2001); M. Keller, W. Metzner, and U. Schollwock, arXiv:cond-mat/0101047.

    Article  ADS  Google Scholar 

  10. A. Toschi, P. Barone, M. Capone, and C. Castellani, New J. Phys. 7, 7 (2005); A. Toschi, P. Barone, M. Capone, and C. Castellani, arXiv:cond-mat/0411637v1.

    Article  ADS  Google Scholar 

  11. J. Bauer, A. C. Hewson, and N. Dupis, Phys. Rev. B: Condens. Matter 79, 214518 (2009); J. Bauer, A. C. Hewson, and N. Dupis, arXiv:0901.1760v2.

    Article  ADS  Google Scholar 

  12. A. Koga and P. Werner, Phys. Rev. A: At., Mol., Opt. Phys. 84, 023638 (2011); A. Koga and P. Werner, arXiv:1106.4559v1.

    Article  ADS  Google Scholar 

  13. N. A. Kuleeva, E. Z. Kuchinskii, and M. V. Sadovskii, J. Exp. Theor. Phys. 119(2), 264 (2014); N. A. Kuleeva, E. Z. Kuchinskii, and M. V. Sadovskii, arXiv:1401.2295.

    Article  Google Scholar 

  14. A. I. Posazhennikova and M. V. Sadovskii, JETP Lett. 65(3), 270 (1997).

    Article  ADS  Google Scholar 

  15. F. Palestini and G. C. Strinati, Phys. Rev. B: Condens. Matter 88, 174504 (2013); F. Palestini and G. C. Strinati, arXiv:1311.2761.

    Article  ADS  Google Scholar 

  16. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 82(4), 198 (2005); E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, arXiv:cond-mat/0506215.

    Article  ADS  Google Scholar 

  17. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Prushke, and V. I. Anisimov, Phys. Rev. B: Condens. Matter 72, 155105 (2005); M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Prushke, and V. I. Anisimov, arXiv:cond-mat/0508585.

    Article  ADS  Google Scholar 

  18. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Low Temp. Phys. 32(4), 398 (2006); E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, arXiv:condmat/0510376.

    Article  ADS  Google Scholar 

  19. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys.—Usp. 55(4), 325 (2012); E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, arXiv:1109.2305.

    Article  ADS  Google Scholar 

  20. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, J. Exp. Theor. Phys. 106(3), 581 (2008); E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, arXiv:0706.2618.

    Article  ADS  Google Scholar 

  21. E. Z. Kuchinskii, N. A. Kuleeva, I. A. Nekrasov, and M. V. Sadovskii, J. Exp. Theor. Phys. 110(2), 325 (2010); E. Z. Kuchinskii, N. A. Kuleeva, I. A. Nekrasov, and M. V. Sadovskii, arXiv:0908.3747.

    Article  ADS  Google Scholar 

  22. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B: Condens. Matter 80, 115124 (2009); E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, arXiv:0906.3865.

    Article  ADS  Google Scholar 

  23. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B: Condens. Matter 75, 115102 (2007); E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, arXiv:cond-mat/0609404.

    Article  ADS  Google Scholar 

  24. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, JETP Lett. 100(3), 192 (2014); E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, arXiv:1406.5603.

    Article  Google Scholar 

  25. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (Pergamon, Oxford, 1965); M. V. Sadovskii, Diagrammatics (World Scientific, Singapore, 2006).

    MATH  Google Scholar 

  26. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 60, 395 (2008).

    Article  ADS  Google Scholar 

  27. M. V. Sadovskii, Superconductivity and Localization (World Scientific, Singapore, 2000).

    Book  Google Scholar 

  28. P. G. De Gennes, Superconductivity of Metals and Alloys (W. A. Benjamin, New York, 1966).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Z. Kuchinskii.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchinskii, E.Z., Kuleeva, N.A. & Sadovskii, M.V. Attractive Hubbard model with disorder and the generalized Anderson theorem. J. Exp. Theor. Phys. 120, 1055–1063 (2015). https://doi.org/10.1134/S1063776115050143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776115050143

Keywords

Navigation