Skip to main content
Log in

Tribological, Physicomechanical, and Other Properties of Composites Based on Ultra-High Molecular-Weight Polyethylene, Polytetrafluoroethylene, and Еthylene–Tetrafluoroethylene Copolymer with Quasicrystalline Filler Al–Cu–Fe

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

An urgent problem in improving polymer-based tribotechnical materials is to reduce the friction and wear coefficients with preservation of sufficiently high physicomechanical characteristics of material. This review covers the studies devoted to the preparation and analysis of tribological, deformation-strength, and thermophysical properties, as well as the structure and morphology of composites based on polymer matrices of ultra-high molecular-weight polyethylene (UHMWPE), polytetrafluoroethylene, and ethylene– tetrafluoroethylene copolymer, filled with quasicrystalline (QC) Al–Cu–Fe powder, which were carried out at the National Research Centre “Kurchatov Institute.” These studies were aimed at obtaining and analyzing information in order to gain a deeper insight into the processes occurring in materials subjected to friction and search for promising combinations of materials in the matrix–filler pair. Good prospects of application of QC Al–Cu–Fe powder as a filler are justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. V. Maksimkin, S. D. Kaloshkin, V. V. Cherdyntsev, et al., Materialovedenie, No. 11, 13 (2011).

    Google Scholar 

  2. Yu. V. Kirillina, N. N. Lazareva, S. A. Sleptsova, et al., Vysokomol. Soedin., Ser. A 58 (1), 82 (2016).

    Google Scholar 

  3. S. V. Panin, L. A. Kornienko, S. T. Nguen, et al., Trenie Iznos 35 (4), 444 (2014).

    Google Scholar 

  4. Yu. Yu. Gavrilov, G. E. Selyutin, V. E. Red’kin, and O. E. Popova, Plast. Massy, Nos. 7–8, 13 (2018).

    Google Scholar 

  5. V. N. Aderikha, A. P. Krasnov, V. A. Shapovalov, and A. S. Golub, Wear 320, 135 (2014).

    Article  Google Scholar 

  6. A. S. Zabolotnov, P. N. Brevnov, V. V. Akul’shin, et al., All Materials: An Encyclopedic Handbook (2017), No. 12, p. 13 [in Russian].

  7. J. M. Dubois, New Horiz. Quasicrystals (Conf.) (World Scientific, Singapore, 1997), p. 208.

    Google Scholar 

  8. P. D. Bloom, K. G. Baikerikar, J. W. Anderegg, and V. V. Sheares, Mater. Sci. Eng. A 360, 46 (2003).

    Article  Google Scholar 

  9. P. D. Bloom, K. G. Baikerikar, J. W. Anderegg, and V. V. Sheares, Proc. Symp. Mater. Res. Soc. 643, K 16.3.1 (2001).

  10. Y. Liu, P. D. Bloom, V. V. Sheares, and J. U. Otaigbe, Proc. Symp. Mater. Res. Soc. 702, 339 (2002).

  11. B. C. Anderson, P. D. Bloom, K. G. Baikerikar, and V. V. Sheares, Biomaterials 8 (23), 1761 (2002).

    Article  Google Scholar 

  12. L. R. F. Figueiredo, L. B. da Silva, T. A. dos Passos, et al., 22nd Int. Cong. “Mech. Eng. (COBEM 2013) Ribeirao Preto,” San Paulu, Brazil, 2013, p. 36.

  13. M. B. Tsetlin, A. A. Teplov, E. K. Golubev, et al., Proc. XII Int. Conf. Nanostructured Materials (NANO 2014), Moscow, Russia, 2014, p. 534.

  14. M. B. Tsetlin, A. A. Teplov, S. I. Belousov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (5), 1077 (2015).

    Article  Google Scholar 

  15. M. B. Tsetlin, A. A. Teplov, S. I. Belousov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11 (2), 315 (2017).

    Article  Google Scholar 

  16. M. B. Tsetlin, A. A. Teplov, S. I. Belousov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 277 (2018).

    Article  Google Scholar 

  17. I. E. Uflyand, E. G. Drogan, V. E. Burlakova, et al., Polym. Test. 74, 178 (2019).

    Article  Google Scholar 

  18. D. Lutz, Ind. Phys. 2 (4), 26 (1996).

    Google Scholar 

  19. M. Brown, Technical Insights Futuretech, 1999 (April 5), p. 233.

  20. E. A. Golovkova, M. B. Tsetlin, A. Teplov, et al., Additive Technologies: Present and Future. Proc. V Int. Conf., Moscow, 2019, p. 65.

  21. E. A. Golovkova, A. A. Teplov, M. B. Tsetlin, et al., Crystallogr. Rep. 65 (4), 622 (2020).

    Article  ADS  Google Scholar 

  22. A. M. Bryazkalo, R. E. Gol’denberg, M. Mikheeva, et al., Byull. Izobret., 2009, No. 29, p. 32.

  23. E. G. Avvakumov, Mechanical Methods for Activating Chemical Processes (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  24. G. Heinicke, Tribochemistry (Carl Hanser, Munich, 1985).

    Google Scholar 

  25. V. E. Panin, S. V. Panin, L. A. Kornienko, et al., Trenie Iznos 31 (2), 13 (2010).

    Google Scholar 

  26. A. A. Okhlopkova, S. A. Sleptsova, A. G. Parnikova, et al., Trenie Iznos 29 (6), 635 (2008).

    Google Scholar 

  27. A. M. Kochnev, A. E. Zaikin, S. S. Galibeev, and V. P. Arkhireev, Physical Chemistry of Polymers (Fen, Kazan’, 2003) [in Russian].

  28. I. I. Tugov and G. I. Kostrykina, Chemistry and Physics of Polymers (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  29. S. S. Pesetskii, S. P. Bogdanovich, and N. K. Myshkin, Trenie Iznos 28 (5), 500 (2007).

    Google Scholar 

  30. D. S. Shaitura, A. A. Teplov, E. A. Chikina, et al., Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 11, 87 (2010).

  31. A. V. Tarasov, A. S. Alikhanyan, and I. V. Arkhangel’skii, Inorg. Mater. 45 (7), 809 (2009).

    Article  Google Scholar 

  32. A. V. Tarasov, A. S. Alikhanyan, G. A. Kirakosyan, et al., Inorg. Mater. 46 (12), 1308 (2010).

    Article  Google Scholar 

  33. A. V. Tarasov, Candidate’s Dissertation in Chemistry (IONKh–MGU, Moscow, 2010).

  34. L. V. Gurvich, G. V. Karachevtsev, and V. N. Kondrat’ev, Breaking Energy of Chemical Bonds. Ionization Potentials and Electron Affinity: A Handbook, Ed. by V. N. Kondrat’ev (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  35. J. A. Conesa and R. Font, Polym. Eng. Sci. 41, 2137 (2001).

    Article  Google Scholar 

  36. S. R. Carlo, C. C. Pery, J. Torres, et al., Appl. Surf. Sci. 195, 93 (2002).

    Article  ADS  Google Scholar 

  37. P. K. Wu, G. R. Yang, X. F. Ma, et al., Appl. Phys. Lett. 65 (4), 508 (1994).

    Article  ADS  Google Scholar 

  38. S. J. Ding, V. Zaporojtchenko, J. Kruse, et al., Appl. Phys. A 76, 851 (2003).

    Article  ADS  Google Scholar 

  39. W. A. Brainard and D. H. Buckley, Wear 26, 75 (1973).

    Article  Google Scholar 

  40. P. Cadman and G. M. Gossedge, J. Mater. Sci. 14, 2672 (1979).

    Article  ADS  Google Scholar 

  41. T. Tanabe, S. Kameoka, and A. P. Tsai, Appl. Catalysis A 384 (1–2), 241 (2010).

    Article  Google Scholar 

  42. A. L. C. L. Jamshidi, L. Nascimento, R. J. Rodbari, et al., J. Chem. Eng. Process Technol. 5, 187 (2014).

    Google Scholar 

  43. L. C. L. Agostinho, C. M. B. M. Barbosa, L. Nascimento, et al., J. Chem. Eng. Process Technol. 4, 164 (2013).

    Google Scholar 

  44. M. A. Mel’nichenko, L. V. Chuprova, and E. R. Mullina, Usp. Sovrem. Estestvozn., No. 11-1, 70 (2015).

  45. V. A. Pakharenko, V. G. Zverlin, and E. M. Kirienko, Filled Thermoplastic Materials: A Handbook, Ed. by Yu. S. Lipatov (Tekhnika, Kiev, 1986) [in Russian].

    Google Scholar 

  46. J. Ye, D. L. Burris, and T. Xie, Lubricants 4 (1), 4 (2016).

    Article  Google Scholar 

  47. Yu. S. Lipatov, Physical Chemistry of Filled Polymers (Khimiya, Moscow, 1977) [in Russian].

    Google Scholar 

  48. O. V. Kropotin, Yu. K. Mashkov, V. Egorova, et al., Zh. Tekh. Fiz. 84 (5), 66 (2014).

    Google Scholar 

  49. B. A. Krick, A. A. Pitenis, K. L. Harris, et al., Tribol. Int. 95, 245 (2016).

    Article  Google Scholar 

  50. Yu. K. Mashkov, Tribophysics of Metals and Polymers (OmGTU, Omsk, 2013) [in Russian].

  51. S. W. Han and T. Blanchet, J. Tribol. 119 (4), 694 (1997).

    Article  Google Scholar 

  52. S. E. McElwain, T. A. Blanchet, L. S. Schadler, et al., Tribol. Trans. 51 (3), 247 (2008).

    Article  Google Scholar 

  53. V. P. Solomko, Filled Crystallizing Polymers (Naukova Dumka, Kiev, 1980) [in Russian].

    Google Scholar 

  54. Yu. M. Pleskachevskii, Trenie Iznos 4 (5), 948 (1983).

    Google Scholar 

  55. V. A. Gol’dade, V. A. Struk, and S. S. Pesetskii, Wear Inhibitors of Metal–Polymer Systems (Khimiya, Moscow, 1993) [in Russian].

    Google Scholar 

  56. G. G. Odian, Principles of Polymerization (McGrow Hill, New York, 1970).

    Google Scholar 

  57. M. Conte, B. Pinedo, and A. Igartua, Wear 307 (1–2), 81 (2013).

    Article  Google Scholar 

  58. V. P. Privalko, Handbook of Physical Chemistry of Polymers. Properties of Polymers in the Block State, Vol. 2 (Naukova Dumka, Kiev, 1984) [in Russian].

    Google Scholar 

  59. A. S. Luyt, J. A. Molefi, and H. Krump, Polym. Degrad. Stab., No. 91, 1629 (2006).

  60. L. J. Bellamy, The Infrared Spectra of Complex Molecules (Chapman and Hall, London, 1968).

    Google Scholar 

  61. L. Costa, M. P. Luda, and L. Trossarelli, Polym. Degrad. Stab. 55 (3), 329 (1997).

    Article  Google Scholar 

  62. L. Costa, M. P. Luda, and L. Trossarelli, Polym. Degrad. Stab. 58 (1–2), 41 (1997).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

SEM and Raman spectroscopy were performed on equipment of the resource center (RC) ZEM; ETFE and PTFE samples were prepared, and TGA and DSC measurements were carried out using equipment of the RC OGM; IR spectroscopy was performed on equipment of the RC MSF; and X-ray diffraction was performed using equipment the RC of Laboratory X-Ray Methods of the National Research Centre “Kurchatov Institute.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Teplov.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teplov, A.A., Belousov, S.I., Golovkova, E.A. et al. Tribological, Physicomechanical, and Other Properties of Composites Based on Ultra-High Molecular-Weight Polyethylene, Polytetrafluoroethylene, and Еthylene–Tetrafluoroethylene Copolymer with Quasicrystalline Filler Al–Cu–Fe. Crystallogr. Rep. 66, 883–896 (2021). https://doi.org/10.1134/S1063774521060420

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521060420

Navigation