Skip to main content
Log in

X-ray structures of uridine phosphorylase from Vibrio cholerae in complexes with uridine, thymidine, uracil, thymine, and phosphate anion: Substrate specificity of bacterial uridine phosphorylases

  • Structure of Macromolecular Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

In many types of human tumor cells and infectious agents, the demand for pyrimidine nitrogen bases increases during the development of the disease, thus increasing the role of the enzyme uridine phosphorylase in metabolic processes. The rational use of uridine phosphorylase and its ligands in pharmaceutical and biotechnology industries requires knowledge of the structural basis for the substrate specificity of the target enzyme. This paper summarizes the results of the systematic study of the three-dimensional structure of uridine phosphorylase from the pathogenic bacterium Vibrio cholerae in complexes with substrates of enzymatic reactions—uridine, phosphate anion, thymidine, uracil, and thymine. These data, supplemented with the results of molecular modeling, were used to consider in detail the structural basis for the substrate specificity of uridine phosphorylases. It was shown for the first time that the formation of a hydrogen-bond network between the 2′-hydroxy group of uridine and atoms of the active-site residues of uridine phosphorylase leads to conformational changes of the ribose moiety of uridine, resulting in an increase in the reactivity of uridine compared to thymidine. Since the binding of thymidine to residues of uridine phosphorylase causes a smaller local strain of the β-N1-glycosidic bond in this the substrate compared to the uridine molecule, the β-N1-glycosidic bond in thymidine is more stable and less reactive than that in uridine. It was shown for the first time that the phosphate anion, which is the second substrate bound at the active site, interacts simultaneously with the residues of the β5-strand and the β1-strand through hydrogen bonding, thus securing the gate loop in a conformation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Vita, A. Amici, T. Cacciamani, et al., Int. J. Biochem. 18 (5), 431 (1986).

    Article  Google Scholar 

  2. J. C. Leer, K. Hammer-Jespersen, and M. Schwartz, Eur. J. Biochem. 75 (1), 217 (1977).

    Article  Google Scholar 

  3. M. V. Dontsova, Y. A. Savochkina, A. G. Gabdoulkhakov, et al., Acta Crystallogr. D 60 (4), 709 (2004).

    Article  Google Scholar 

  4. N. S. Brown and R. Bicknell, Biochem J. 334 (1), 1 (1998).

    Article  Google Scholar 

  5. T. T. Caradoc-Davies, S. M. Cutfield, I. L. Lamont, et al., J. Mol. Biol. 337 (2), 337 (2004).

    Article  Google Scholar 

  6. K. Katsumata, H. Tomioka, T. Sumi, et al., Cancer Chemother. Pharmacol. 51 (2), 155 (2003).

    Google Scholar 

  7. P. J. Finan, P. A. Koklitis, E. M. Chisholm, et al., Br. J. Cancer 50 (5), 711 (1984).

    Article  Google Scholar 

  8. A. Leyva, I. Kraal, J. Lankelma, et al., Anticancer Res. 3 (4), 227 (1983).

    Google Scholar 

  9. A. Kanzaki, Y. Takebayashi, H. Bando, et al., Int. J. Cancer 97 (5), 631 (2002).

    Article  Google Scholar 

  10. C. Luccioni, J. Beaumatin, V. Bardot, et al., Int. J. Cancer 58 (4), 517 (1994).

    Article  Google Scholar 

  11. T. Ishikawa, M. Utoh, N. Sawada, et al., Biochem. Pharmacol. 55 (7), 1091 (1998).

    Article  Google Scholar 

  12. B. Reigner, K. Blesch, and E. Weidekamm, Clin. Pharmacokinet. 40 (2), 85 (2001).

    Article  Google Scholar 

  13. J. Schuller, J. Cassidy, E. Dumont, et al., Cancer. Chemother. Pharmacol. 45 (4), 291 (2000).

    Article  Google Scholar 

  14. M. Venturini, Eur. J. Cancer 38 (Suppl. 2), 3 (2002).

    Article  Google Scholar 

  15. E. Sivridis, Adv. Exp. Med. Biol. 476, 297 (2000).

    Article  Google Scholar 

  16. T. P. Roosild, S. Castronovo, M. Fabbiani, et al., BMC Struct. Biol. 9, 14 (2009).

    Article  Google Scholar 

  17. M. H. el Kouni, F. N. Naguib, J. G. Niedzwicki, et al., J. Biol. Chem. 263 (13), 6081 (1988).

    Google Scholar 

  18. B. M. Jimenez, P. Kranz, C. S. Lee, et al., Biochem. Pharmacol. 38 (21), 3785 (1989).

    Article  Google Scholar 

  19. C. S. Lee, B. M. Jimenez, and W. J. O’Sullivan, Mol. Biochem. Parasitol. 30 (3), 271 (1988).

    Article  Google Scholar 

  20. K. S. Alekseev, Candidate’s Dissertation in Chemistry (Engelhardt Institute of Molecular Biology, Moscow, 2012).

    Google Scholar 

  21. A. A. Lashkov, A. G. Gabdulkhakov, I. I. Prokofev, et al., Acta Crystallogr. F 68 (11), 1394 (2012).

    Article  Google Scholar 

  22. I. I. Prokofev, A. A. Lashkov, A. G. Gabdulkhakov, et al., Acta Crystallogr. F 70, Part 1, 60 (2014).

    Article  Google Scholar 

  23. M. Zolotukhina, I. Ovcharova, S. Eremina, et al., Res. Microbiol. 154 (7), 510 (2003).

    Article  Google Scholar 

  24. W. Kabsch, Acta Crystallogr. D 66 (2), 133 (2010).

    Article  Google Scholar 

  25. P. Evans, Acta Crystallogr. D 62, Part 1, 72 (2006).

    Article  Google Scholar 

  26. A. Vagin and A. Teplyakov, J. Appl. Crystallogr. 30 (6), 1022 (1997).

    Article  Google Scholar 

  27. A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, et al., J. Appl. Crystallogr. 40, Part 4, 658 (2007).

    Article  Google Scholar 

  28. P. D. Adams, P. V. Afonine, G. Bunkoczi, et al., Acta Crystallogr. D 66, Part 2, 213 (2010).

    Article  Google Scholar 

  29. G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Acta Crystallogr. D 53 (3), 240 (1997).

    Article  Google Scholar 

  30. P. Emsley and K. Cowtan, Acta Crystallogr. D 60 (12), 2126 (2004).

    Article  Google Scholar 

  31. P. Emsley, B. Lohkamp, W. G. Scott, et al., Acta Crystallogr. D 66 (4), 486 (2010).

    Article  Google Scholar 

  32. R. A. Laskowski, M. W. MacArthur, D. S. Moss, et al., J. Appl. Crystallogr. 26 (2), 283 (1993).

    Article  Google Scholar 

  33. V. B. Chen, W. B. Headd. J. J. Arendall, et al., Acta Crystallogr. D 66 (1), 12 (2010).

    Article  Google Scholar 

  34. W. L. Delano, The PyMOL Molecular Graphics System (2002). URL: http://www.pymol.orgciteulike-articleid: 2816763.

    Google Scholar 

  35. M. A. Larkin, G. Blackshields, N. P. Brown, et al., Bioinformatics 23 (21), 2947 (2007).

    Article  Google Scholar 

  36. X. Robert and P. Gouet, Nucl. Acids Res. 42, 320 (2014).

    Article  Google Scholar 

  37. A. C. Wallace, R. A. Laskowski, and J. M. Thornton, Protein Sci. 5 (6), 1001 (1996).

    Article  Google Scholar 

  38. A. D. Bochevarov, E. Harder, T. F. Hughes, et al., Int. J. Quantum Chem. 113 (18), 2110 (2013).

    Article  Google Scholar 

  39. C. R. Guimaraes and M. Cardozo, J. Chem. Inf. Model. 48 (5), 958 (2008).

    Article  Google Scholar 

  40. J. L. Banks, H. S. Beard, Y. Cao, et al., J. Comput. Chem. 26 (16), 1752 (2005).

    Article  Google Scholar 

  41. E. Polak and G. Ribiere, ESAIM: Mathematical Modelling and Numerical Analysis—Modélisation Mathématique et Analyse Numérique (1969), Vol. 3, p. 35.

    Google Scholar 

  42. X. Q. Xie and J. Z. Chen, J. Chem. Inf. Model. 48 (3), 465 (2008).

    Article  MathSciNet  Google Scholar 

  43. A. W. Schuttelkopf and D. M. Van Aalten, Acta Crystallogr. D 60 (8), 1355 (2004).

  44. R. A. Friesner, J. L. Banks, R. B. Murphy, et al., J. Med. Chem. 47 (7), 1739 (2004).

    Article  Google Scholar 

  45. S. Van der David, L. Erik, H. Berk, et al., J. Comput. Chem. 26 (16), 1701 (2005).

    Article  Google Scholar 

  46. E. Krissinel and K. Henrick, J. Mol. Biol. 372 (3), 774 (2007).

    Article  Google Scholar 

  47. A. A. Lashkov, S. E. Sotnichenko, I. I. Prokofiev, et al., Acta Crystallogr. D 68 (8), 968 (2012).

    Article  Google Scholar 

  48. A. A. Lashkov, N. E. Zhukhlistova, A. H. Gabdoulkhakov, et al., Acta Crystallogr. D 66, Part 1, 51 (2010).

    Article  Google Scholar 

  49. M. G. Rossmann and P. Argos, Annu. Rev. Biochem. 50, 497 (1981).

    Article  Google Scholar 

  50. W. Bu, E. C. Settembre, M. H. Kouni, et al., Acta Crystallogr. D 61 (7), 863 (2005).

    Article  Google Scholar 

  51. T. H. Tran, S. Christoffersen, P. W. Allan, et al., Biochemistry 50 (30), 6549 (2011).

    Article  Google Scholar 

  52. T. Miyahara, H. Nakatsuji, and T. Wada, J. Phys. Chem. A 118 (16), 2931 (2014).

    Article  Google Scholar 

  53. D. Cao, R. L. Russell, D. Zhang, et al., Cancer Res. 62 (8), 2313 (2002).

    Google Scholar 

  54. M. Iigo, K. Nishikata, and A. Hoshi, Jpn J. Cancer Res. 83 (4), 392 (1992).

    Article  Google Scholar 

  55. C. J. Van Groeningen, G. J. Peters, and H. M. Pinedo, Semin. Oncol. 19 (2), 148 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lashkov.

Additional information

Original Russian Text © I.I. Prokofev, A.A. Lashkov, A.G. Gabdulkhakov, V.V. Balaev, T.A. Seregina, A.S. Mironov, C. Betzel, A.M. Mikhailov, 2016, published in Kristallografiya, 2016, Vol. 61, No. 6, pp. 919–939.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokofev, I.I., Lashkov, A.A., Gabdulkhakov, A.G. et al. X-ray structures of uridine phosphorylase from Vibrio cholerae in complexes with uridine, thymidine, uracil, thymine, and phosphate anion: Substrate specificity of bacterial uridine phosphorylases. Crystallogr. Rep. 61, 954–973 (2016). https://doi.org/10.1134/S1063774516060134

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774516060134

Navigation