Skip to main content
Log in

Circumstellar Shell and Emission of the SN 2020tlf Progenitor

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We investigate the phenomenon of a dense circumstellar (CS) shell and powerful emission of the (type IIP) SN 2020tlf progenitor. Our modeling of the H\(\alpha\) line and the circumstellar (CS) interaction suggests a CS shell radius of \({\sim}10^{15}\) cm and a mass of \({\sim}\)0.2 \(M_{\odot}\) lost by the supernova (SN) progenitor within \(\sim\)6 yr before the explosion. Spectroscopy and photometry of the SN after the explosion show no clear signatures of the material lost by the SN progenitor in the period of its high luminosity. However, this material could be present in the inner zone of the CS shell. We propose a hydrodynamic model of the consequences of a flash with an energy of \(5\times 10^{48}\) erg in the convective nuclear burning zone. The model predicts the ejection of outer layers of the SN progenitor (\(\sim\)0.1\(M_{\odot}\)) and a luminosity of \(10^{40}\) erg s\({}^{-1}\) for hundreds of days in agreement with the observed SN progenitor luminosity. We propose the Lighthill mechanism of acoustic wave generation by turbulence in the convective nuclear burning zone to account for the phenomenon of confined CS shells in core-collapse SNe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. W. D. Arnett, Astrophys. J. 237, 541 (1980).

    Article  ADS  Google Scholar 

  2. W. D. Arnett and C. Meakin, Astrophys. J. 733, 78 (2011).

    Article  ADS  Google Scholar 

  3. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961).

    MATH  Google Scholar 

  4. R. A. Chevalier, Astrophys. J. 259, 302 (1982).

    Article  ADS  Google Scholar 

  5. N. N. Chugai, Mon. Not. R. Astron. Soc. 326, 1448 (2001).

    Article  ADS  Google Scholar 

  6. N. N. Chugai, arXiv: 2203.02717 (2022).

  7. L. Dessart, E. Livne, and R. Waldman, Mon. Not. R. Astron. Soc. 405, 2113 (2010).

    ADS  Google Scholar 

  8. A. Fassia, W. P. S. Meikle, V. D. Vacca, et al., Mon. Not. R. Astron. Soc. 318, 1093 (2000).

    Article  ADS  Google Scholar 

  9. J. L. Giuliani, Astrophys. J. 245, 903 (1981).

    Article  ADS  Google Scholar 

  10. D. G. Hummer and D. Mihalas, Astrophys. J. 150, L57 (1967).

    Article  ADS  Google Scholar 

  11. W. V. Jacobson-Galán, L. Dessart, D. O. Jones, et al., Astrophys. J. 924, 15 (2022).

    Article  ADS  Google Scholar 

  12. H.-T. Janka, Handbook of Supernovae (Springer Int., Cham, 2017), p. 1575.

    Google Scholar 

  13. Sh.-Ch. Leung, S. Wu, and J. Fuller, Astrophys. J. 923, 41L (2021).

    Article  ADS  Google Scholar 

  14. M. J. Lighthill, Proc. R. Soc. London, Ser. A 211, 564 (1952).

    Article  ADS  Google Scholar 

  15. M. Mocák, C. Meakin, S. W. Campbell, et al., Mon. Not. R. Astron. Soc. 481, 2918 (2018).

    Article  ADS  Google Scholar 

  16. A. Pastorello, S. Benetti, P. J. Brown, et al., Mon. Not. R. Astron. Soc. 449, 1921 (2015).

    Article  ADS  Google Scholar 

  17. E. Quataert and J. Shiode, Mon. Not. R. Astron. Soc. 423, L92 (2012).

    Article  ADS  Google Scholar 

  18. R. F. Stein, Solar Phys. 2, 385 (1967).

    Article  ADS  Google Scholar 

  19. R. A. Sunyaev and L. G. Titarchuk, Astron. Astrophys. 86, 121 (1980).

    ADS  Google Scholar 

  20. R. S. Sutherland and M. A. Dopita, Astrophys. J. Suppl. 88, 253 (1993).

    Article  Google Scholar 

  21. V. P. Utrobin, Astron. Astrophys. 281, L89 (1994).

    ADS  Google Scholar 

  22. V. P. Utrobin, Astron. Astrophys. 461, 233 (2007).

    Article  ADS  Google Scholar 

  23. V. P. Utrobin, A. Wongwathanarat, H.-Th. Janka, et al., Astrophys. J. 914, 4 (2021).

    Article  ADS  Google Scholar 

  24. S. E. Woosley, A. Heger, and T. A. Weaver, Rev. Mod. Phys. 74, 1015 (2002).

    Article  ADS  Google Scholar 

  25. O. Yaron, D. A. Perley, A. Gal-Yam, et al., Nat. Phys. 13, 510 (2017).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Scientific Foundation (project no. 19-12-00229) and the Russian Foundation for Basic Research and the Deutsche Forschungsgemeinschaft (project no. 21-52-12032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Chugai.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chugai, N.N., Utrobin, V.P. Circumstellar Shell and Emission of the SN 2020tlf Progenitor. Astron. Lett. 48, 275–283 (2022). https://doi.org/10.1134/S1063773722060020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773722060020

Keywords:

Navigation