Skip to main content
Log in

SPH simulations of structures in protoplanetary disks

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Using the GADGET-2 code modified by us, we have computed hydrodynamic models of a protoplanetary disk perturbed by a low-mass companion. We have considered the cases of circular and eccentric orbits coplanar with the disk and inclined relative to its midplane. During our simulations we computed the column density of test particles on the line of sight between the central star and observer. On this basis we computed the column density of circumstellar dust by assuming the dust and gas to be well mixed with a mass ratio of 1: 100. To study the influence of the disk orientation relative to the observer on the interstellar extinction, we performed our computations for four inclinations of the line of sight to the disk plane and eight azimuthal directions. The column densities in the circumstellar disk of the central star and the circumbinary disk were computed separately. Our computations have shown that periodic column density oscillations can arise in both inner and circumbinary disks. The amplitude and shape of these oscillations depend on the system’s parameters (the orbital eccentricity and inclination, the component mass ratio) and its orientation in space. The results of our simulations can be used to explain the cyclic brightness variations of young UX Ori stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Artymowicz and S. H. Lubow, Astrophys. J. 421, 651 (1994).

    Article  ADS  Google Scholar 

  2. P. Artymowicz and S. H. Lubow, Astrophys. J. 467, L77 (1996).

    Article  ADS  Google Scholar 

  3. M. R. Bate and I. A. Bonnell, Mon. Not. R. Astron. Soc. 285, 33 (1997).

    Article  ADS  Google Scholar 

  4. C. L. Brogan, L. M. Pérez, T. R. Hunter, et al. (Alma Partnership), Astrophys. J. 808, L3 (2015).

    Article  ADS  Google Scholar 

  5. C. J. Burrows, J. E. Krist, K. R. Stapelfeldt, and WFPC2 InvestigationDefinition Team, Bull. Am.Astron. Soc. 27, 1329 (1995).

    Google Scholar 

  6. E. Chapillon, S. Guilloteau, A. Dutrey, and V. Piétu, Astron. Astrophys. 488, 565 (2008).

    Article  ADS  Google Scholar 

  7. G. Chauvin, A.-M. Lagrange, H. Beust, M. Bonnefoy, A. Boccaletti, D. Apai, F. Allard, D. Ehrenreich, et al., Astron. Astrophys. 542, A41 (2012).

    Article  ADS  Google Scholar 

  8. E. I. Chiang and R. A. Murray-Clay, Astrophys. J. 607, 913 (2004).

    Article  ADS  Google Scholar 

  9. V. Christiaens, S. Casassus, S. Perez, G. van der Plas, and F. Ménard, Astrophys. J. 785, L12 (2014).

    Article  ADS  Google Scholar 

  10. M. Clampin, J. E. Krist, D. R. Ardila, D. A. Golimowski, G. F. Hartig, H. C. Ford, G. D. Illingworth, F. Bartko, et al., Astron. J. 126, 385 (2003).

    Article  ADS  Google Scholar 

  11. J. Cuadra, P. J. Armitage, R. D. Alexander, and M. C. Begelman, Mon. Not._R. Astron. Soc. 393, 1423 (2009).

    Article  ADS  Google Scholar 

  12. T. V. Demidova, Astrophysics 59, 505 (2016).

    Article  Google Scholar 

  13. T.V. Demidova and V. P. Grinin, Astron. Lett. 40, 334 (2014).

    Article  ADS  Google Scholar 

  14. T. V. Demidova, N. Ya. Sotnikova, and V. P. Grinin, Astron. Lett. 36, 422 (2010a).

    Article  ADS  Google Scholar 

  15. T. V. Demidova, V. P. Grinin, and N. Ya. Sotnikova, Astron. Lett. 36, 498 (2010b).

    Article  ADS  Google Scholar 

  16. T. V. Demidova, V. P. Grinin, and N. Ya. Sotnikova, Astron. Lett. 39, 26 (2013).

    Article  ADS  Google Scholar 

  17. D. J. D’Orazio, Z. Haiman, and A. MacFadyen, Mon. Not. R. Astron. Soc. 436, 2997 (2013).

    Article  ADS  Google Scholar 

  18. C. Doucet, E. Pantin, P. O. Lagage, and C. P. Dullemond, Astron. Astrophys. 460, 117D (2006).

    Article  ADS  Google Scholar 

  19. P. P. Eggleton, Astrophys. J. 268, 368 (1983).

    Article  ADS  Google Scholar 

  20. J.A. Eisner, B. F. Lane, L.A. Hillenbrand, R. L. Akeson, and A. I. Sargent, Astrophys. J. 613, 1049 (2004).

    Article  ADS  Google Scholar 

  21. B. D. Farris, P. Duffell, A. I. MacFadyen, and Z. Haiman, Astrophys. J. 783, 134 (2014).

    Article  ADS  Google Scholar 

  22. A. M. Fateeva, D. V. Bisikalo, P. V. Kaygorodov, and A. Y. Sytov, Astrophys. Space Sci. 335, 125 (2011).

    Article  ADS  Google Scholar 

  23. K. M. Flaherty and J. Muzerolle, Astrophys. J. 719, 1733 (2010).

    Article  ADS  Google Scholar 

  24. R. A. Gingold and J. J. Monaghan, Mon. Not. R. Astron. Soc. 181, 375 (1977).

    Article  ADS  Google Scholar 

  25. R. Gold, V. Paschalidis, Z. B. Etienne, S. L. Shapiro, and H. P. Pfeiffer, Phys. Rev. D 89, id.064060 (2014).

  26. S. A. Grady, D. Devine, B. Woodgate, F. C. Bruhweiler, A. Boggess, J. L. Linsky, P. Plait, M. Clampin, and P. Kalas, Astrophys. J. 544, 895 (2000).

    Article  ADS  Google Scholar 

  27. C. A. Grady, E. F. Polomski, T. Henning, B. Stecklum, B. E. Woodgate, C. M. Telesco, R. K. Pina, T. R. Gull, et al., Astrophys. J. 122, 3396 (2001).

    Google Scholar 

  28. S. A. Grady, B.Woodgate, C. W. Bowers, T. R. Gull, M. L. Sitko, W.J. Carpenter, D. K. Lynch, R.W. Russell, et al., Astrophys. J. 630, 958 (2005).

    Article  ADS  Google Scholar 

  29. J. S. Greaves, W. S. Holland, G. Moriarty-Schieven, T. Jenness, W. R. F. Dent, B. Zuckerman, C. Mc-Carthy, R. A. Webb, et al., Astrophys. J. 506, L133 (1998).

    Article  ADS  Google Scholar 

  30. V. P. Grinin, N. N. Kiselev, N. K. Minikulov, and G. P. Chernova, Sov. Astron. Lett. 14, 219 (1988).

    ADS  Google Scholar 

  31. V. P. Grinin, N. N. Kiselev, G. P. Chernova, N. Kh. Minikulov, and N. V. Voshchinnikov, Astrophys. Space Sci. 186, 283 (1991).

    Article  ADS  Google Scholar 

  32. V. P. Grinin, T. V. Demidova, and N. Ya. Sotnikova, Astron. Lett. 36, 808 (2010).

    Article  ADS  Google Scholar 

  33. R. Gunther and W. Kley, Astron. Astrophys. 387, 550 (2002).

    Article  ADS  Google Scholar 

  34. T. Hanawa, Y. Ochi, and K. Ando, Astrophys. J. 708, 485 (2010).

    Article  ADS  Google Scholar 

  35. J. Hashimoto, M. Tamura, T. Muto, T. Kudo,M. Fukagawa, T. Fukue,M. Goto, C. A. Grady, et al., Astrophys. J. 729, L17 (2011).

    Article  ADS  Google Scholar 

  36. S.R. Heap, D. J. Lindler, Th.M. Lanz, R. H. Cornett, I. Hubeny, S. P. Maran, and B. Woodgate, Astrophys. J. 539, 435 (2000).

    Article  ADS  Google Scholar 

  37. P. V. Kaigorodov, D. V. Bisikalo, A. M. Fateeva, and P. Yu. Sytov, Astron. Rep. 54, 1078 (2010).

    Article  ADS  Google Scholar 

  38. P. Kalas, J. R. Graham, and M. Clampin, Nature 435, 1067 (2005).

    Article  ADS  Google Scholar 

  39. G. M. Kennedy, M. C. Wyatt, B. Sibthorpe, G. Duchene, P. Kalas, B. C. Matthews, J. S. Greaves, K. Y. L. Su, and M. P. Fitzgerald, Mon. Not. R. Astron. Soc. 421, 2264 (2012).

    Article  ADS  Google Scholar 

  40. W. Kley and R. P. Nelson, Astron.Astrophys. 486, 617 (2008).

    Article  ADS  Google Scholar 

  41. A. Kreplin, G. Weigelt, S. Kraus, V. Grinin, K.-H. Hofmann, M. Kishimoto, D. Schertl, L. Tambovtseva, et al., Astron. Astrophys. 551, id.A21 (2013).

  42. A. Kreplin, D. Madlener, L. Chen, G. Weigelt, S. Kraus, V. Grinin, L. Tambovtseva, and M. Kishimoto, Astron. Astrophys. 590, id.A96 (2016).

  43. J. E. Krist, K. R. Stapelfeldt, F. Ménard, D. L. Padgett, and C. J. Burrows, Astrophys. J. 538, 793 (2000).

    Article  ADS  Google Scholar 

  44. M.-A. Lagrange, D. Gratadour, G. Chauvin, T. Fusco, D. Ehrenreich, D. Mouillet, G. Rousset, D. Rouan, et al., Astron. Astrophys. 493, L21 (2009).

    Article  ADS  Google Scholar 

  45. L. D. Larwood and J. C. P. Papaloizou, Mon. Not. R. Astron. Soc. 285, 288 (1997).

    Article  ADS  Google Scholar 

  46. S. H. Lubow and G. I. Ogilvie, Astrophys. J. 504, 983 (1998).

    Article  ADS  Google Scholar 

  47. L. B. Lucy, Astron. J. 82, 1013 (1977).

    Article  ADS  Google Scholar 

  48. A. I. MacFadyen and M. Milosavljević, Astrophys. J. 672, 83 (2008).

    Article  ADS  Google Scholar 

  49. F. Marzari, H. Scholl, P. Thébault, and C. Baruteau, Astron. Astrophys. 508, 1493 (2009).

    Article  ADS  Google Scholar 

  50. F. Marzari, C. Baruteau, H. Scholl, and P. Thébault, Astron. Astrophys. 539, A98 (2012).

    Article  ADS  Google Scholar 

  51. G. S. Mathews, J. P. Williams, and F. Menárd, Astrophys. J. 753, 59 (2012).

    Article  ADS  Google Scholar 

  52. S. Mayama, M. Tamura, T. Hanawa, T. Matsumoto, M. Ishii, T.-S. Pyo, H. Suto, T. Naoi, et al., Science 327, 306 (2010).

    Article  ADS  Google Scholar 

  53. S. Mayama, J. Hashimoto, T. Muto, T. Tsukagoshi, N. Kusakabe, M. Kuzuhara, Y. Takahashi, T. Kudo, et al., Astrophys. J. 760, L26 (2012).

    Article  ADS  Google Scholar 

  54. M. J. McCaughrean and C. R. O’Dell, Astron. J. 111, 1977 (1996).

    Article  ADS  Google Scholar 

  55. F. Meru and M. R. Bate, Mon. Not. R. Astron. Soc. 427, 2022 (2012).

    Article  ADS  Google Scholar 

  56. D. Mouillet, J. D. Larwood, J. C. B. Papaloizou, and A. M. Larange, Mon. Not. R. Astron. Soc. 292, 896 (1997).

    Article  ADS  Google Scholar 

  57. D. J. Munoz and D. Lai, Astrophys. J. 827, 43 (2016).

    Article  ADS  Google Scholar 

  58. T. Muto, C. A. Grady, J. Hashimoto, M. Fukagawa, J. B. Hornbeck, M. Sitko, R. Russell, C. Werren, et al., Astrophys. J. 748, L22 (2012).

    Article  ADS  Google Scholar 

  59. A. Natta and B. A. Whitney, Astron. Astrophys. 364, 633 (2000).

    ADS  Google Scholar 

  60. A. F. Nelson, Astrophys. J. 537, L65 (2000).

    Article  ADS  Google Scholar 

  61. A. F. Nelson and F. Marzari, Astrophys. J. 827, 93 (2016).

    Article  ADS  Google Scholar 

  62. C. Nixon, A. King, and D. Price, Mon. Not. R. Astron. Soc. 434, 1946 (2013).

    Article  ADS  Google Scholar 

  63. Y. Ochi, K. Sugimoto, and T. Hanawa, Astrophys. J. 623, 922 (2005).

    Article  ADS  Google Scholar 

  64. S.-J. Paardekooper, P. Thébault, and G. Mellema, Mon. Not._R. Astron. Soc. 386, 973 (2008).

    Article  ADS  Google Scholar 

  65. D. L. Padgett, W. Brandner, and K. R. Stappelfeld, Astron. J. 117, 490 (1999).

    Article  Google Scholar 

  66. J. C. B. Papaloizou and C. Terquem, Mon. Not. R. Astron. Soc. 274, 987 (1995).

    ADS  Google Scholar 

  67. G. Picogna and F. Marzari, Astron. Astrophys. 556, A148 (2013).

    Article  ADS  Google Scholar 

  68. R. R. Rafikov, Astrophys. J. 569, 997 (2002).

    Article  ADS  Google Scholar 

  69. A. N. Rostopchina, D. N. Shakhovskoi, V. P. Grinin, and A. A. Lomach, Astron. Rep. 51, 55 (2007).

    Article  ADS  Google Scholar 

  70. J. P. Ruge, S. Wolf, T. Demidova, and V. Grinin, Astron. Astrophys. 579, A110 (2015).

    Article  ADS  Google Scholar 

  71. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  72. J.-M. Shi and J. H. Krolik, Astrophys. J. 807, 131 (2015).

    Article  ADS  Google Scholar 

  73. N. Ya. Sotnikova, Astrophysics 39, 141 (1996).

    Article  ADS  Google Scholar 

  74. N. Ya. Sotnikova and V. P. Grinin, Astron. Lett. 33, 594 (2007).

    Article  ADS  Google Scholar 

  75. V. Springel, Mon. Not. R. Astron. Soc. 364, 1105 (2005).

    Article  ADS  Google Scholar 

  76. V. Springel, N. Yoshida, and S. D. M. White, New Astron. 6, 51 (2001).

    Article  Google Scholar 

  77. S. W. Stahler, in Proceedings of the 33rd ESLAB Symposium on Star Formation from the Small to the Large Scales, Ed. by F. Favata, A. A. Kaas, and A. Wilson (ASTEC, Noordwijk, 2000), p.133.

  78. K. R. Stapelfeldt, J. E. Krist, F. Menard, J. Bouvier, D. L. Padgett, and C. J. Burrows, Astrophys. J. 502, L65 (1998).

    Article  ADS  Google Scholar 

  79. S. Takakuwa, M. Saito, T. K. Saigo, T. Matsumoto, J. Lim, T. Hanawa, and P. T. P. Ho, Astrophys. J. 796, 1 (2014).

    Article  ADS  Google Scholar 

  80. C. Terquem, P. M. Sørensen-Clark, and J. Bouvier, Mon. Not. R. Astron. Soc. 454, 3472 (2015).

    Article  ADS  Google Scholar 

  81. M. de Val-Borro, P. Artymowicz, G. D’Angelo, and A. Peplinski, Astron. Astrophys. 471 1043 (2007).

    Article  ADS  Google Scholar 

  82. A. J. Weinberger, E. E. Becklin, G. Schneider, B. A. Smith, P. J. Lowrance, M. D. Silverstone, B. Zuckerman, and R. J. Terrile, Astrophys. J. 525, L53 (1999).

    Article  ADS  Google Scholar 

  83. J. N. Winn, M. J. Holman, J. A. Johnson, K. Z. Stanek, and P.M. Garnavich, Astrophys. J. 603, L45 (2004).

    Article  ADS  Google Scholar 

  84. M. Xiang-Gruess and J. C. B. Papaloizou, Mon. Not. R. Astron. Soc. 431, 1320 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Demidova.

Additional information

Original Russian Text © T.V. Demidova, V.P. Grinin, 2017, published in Pis’ma v Astronomicheskii Zhurnal, 2017, Vol. 43, No. 2, pp. 129–142.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidova, T.V., Grinin, V.P. SPH simulations of structures in protoplanetary disks. Astron. Lett. 43, 106–119 (2017). https://doi.org/10.1134/S1063773717020025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773717020025

Keywords

Navigation