Skip to main content
Log in

Partial mixing in early-type main-sequence B stars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Partial mixing of material in the radiative envelopes and convective cores of rotating main sequence stars with masses of 8 and 16 M is considered as a function of the inital angular momentum of the stars. Losses of rotational kinetic energy to the generation of shear turbulence in the radiative envelope and the subsequent mixing of material in the envelope are taken into account. With an initial equatorial rotational velocity of 100 km/s, partial mixing develops in the upper part of the layer with variable chemical composition and the lower part of the chemically homogeneous radiative envelope. When the initial equatorial rotational velocity is 150–250 km/s, the joint action of shear turbulence and semi-convection leads to partial mixing in the radiative envelope and central parts of the star. The surface abundance of helium is enhanced, with this effect increasing with the angular momentum of the star. With an initial equatorial rotational velocity of 250 km/s, the ratio of the surface abundances of helium and hydrogen grows by ~30% and ~70% toward the end of the main-sequence evolution of an 8 M and 16 M star, respectively. The transformation of rotational kinetic energy into the energy of partial mixing increases with the angular momentum of the star, but does not exceed ~2%−3% in the cases considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Lyubimkov, S. I. Rostopchin, and D. L. Lambert, Mon. Not. R. Astron. Soc. 351, 745 (2004).

    Article  ADS  Google Scholar 

  2. W. Huang and D. R. Gies, Astrophys. J. 648, 591 (2006).

    Article  ADS  Google Scholar 

  3. J. Krticka, J. Kubat, and D. Groote, Astron. Astrophys. 460, 145 (2006).

    Article  ADS  Google Scholar 

  4. E. I. Staritsin, Astron. Rep. 58, 808 (2014).

    Article  ADS  Google Scholar 

  5. J.-P. Zahn, Mem. Soc. R. Sci. Liege VIII, 31 (1975).

    ADS  Google Scholar 

  6. J.-P. Zahn, Astron. Astrophys. 265, 115 (1992).

    ADS  Google Scholar 

  7. A. V. Kolesnichenko and M. Ya. Marov, Mechanics of Turbulence of Multicomponent Gases (Nauka, Moscow, 1998; Springer, Dordrecht, 2001).

    MATH  Google Scholar 

  8. S. S. Zilitinkevich, Atmospheric Turbulence and Planetary Boundary Layers (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  9. E. V. Bruyatskii, Turbulent Stratified Jet Flows (Naukova Dumka, Kiev, 1986) [in Russian].

    Google Scholar 

  10. E. Bohm-Vitenze, Z. Astrophys. 46, 108 (1958).

    ADS  Google Scholar 

  11. J. P. Cox and R. T. Giuli, Principles of Stellar Structure (Gordon and Breach, New York, 1968).

    Google Scholar 

  12. S. Talon and J.-P. Zahn, Astron. Astrophys. 317, 749 (1997).

    ADS  Google Scholar 

  13. I. Roxburgh, Astron. Astrophys. 65, 281 (1978).

    ADS  Google Scholar 

  14. I. Roxburgh, Astron. Astrophys. 211, 361 (1989).

    ADS  Google Scholar 

  15. J.-P. Zahn, Astron. Astrophys. 252, 179 (1991).

    ADS  Google Scholar 

  16. C. A. Meakin and D. Arnett, Astrophys. J. 667, 448 (2007).

    Article  ADS  Google Scholar 

  17. C. Gilet, A. S. Almgren, J. B. Bell, A. Nonaka, S. E. Woosley, and M. Zingale, Astrophys. J. 773, 137 (2013).

    Article  ADS  Google Scholar 

  18. D. Arnett, C. A. Meakin, M. Viallet, S. W. Campbell, J. C. Lattanzio, and M. Mocák, Astrophys. J. 809, 30 (2015).

    Article  ADS  Google Scholar 

  19. M. Viallet, C. A. Meakin, D. Arnett, and M. Mocák, Astrophys. J. 769, 1 (2013).

  20. M. Viallet, C. Meakin, V. Prat, and D. Arnett, Astron. Astrophys. 580, 61 (2015).

    Article  ADS  Google Scholar 

  21. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  22. G. S. Bisnovatyi-Kogan, Stellar Physics. I. Fundamental Concepts and Stellar Equilibrium (Springer, Heidelberg, 2001).

    MATH  Google Scholar 

  23. I. Roxburgh, Astrophys. Space Sci. 316, 75 (2008).

    Article  ADS  Google Scholar 

  24. P. Eggenberger, G. Meynet, A. Maeder, R. Hirschi, C. Charbonnel, S. Talon, and S. Ekström, Astrophys. Space Sci. 316, 43 (2008).

    Article  ADS  Google Scholar 

  25. G. Schaller, D. Schaerer, G. Meynet, and A. Maeder, Astron. Astrophys. Suppl. Ser. 96, 269 (1992).

    ADS  Google Scholar 

  26. G. A. Meynet, J.-C. Mermilliod, and A. Maeder, Astron. Astrophys. Suppl. Ser. 98, 477 (1993).

    ADS  Google Scholar 

  27. S. Talon, J.-P. Zahn, A. Maeder, and G. Meynet, Astron. Astrophys. 322, 209 (1997).

    ADS  Google Scholar 

  28. S. Ekström, G. Georgy, P. Eggenberger, G. Meynet, et al., Astron. Astrophys. 537, 146 (2012).

    Article  Google Scholar 

  29. N. Castro, L. Fossati, N. Langer, S. Simon-Diaz, F. R. N. Schneider, and R. G. Izzard, Astron. Astrophys. 570, L13 (2014).

    Article  ADS  Google Scholar 

  30. L. Mestel, in Stellar Structure, Ed. by L. H. Aller and D. B. McLaughlin (Univ. of Chicago Press, Chicago, 1965), p. 474.

  31. E. I. Staritsin, Astron. Rep. 49, 634 (2005).

    Article  ADS  Google Scholar 

  32. E. I. Staritsin, Astron. Lett. 33, 93 (2007).

    Article  ADS  Google Scholar 

  33. J.-L. Tassoul Theory of Rotating Stars (Princeton Univ. Press, Princeton, 1978).

    Google Scholar 

  34. P. A. Sweet, Mon. Not. R. Astron. Soc. 110, 548 (1950).

    Article  ADS  Google Scholar 

  35. A. Maeder and J.-P. Zahn, Astron. Astrophys. 334, 1000 (1998).

    ADS  Google Scholar 

  36. E. I. Staritsin, Astron. Lett. 35, 413 (2009).

    Article  ADS  Google Scholar 

  37. B. Paczynski, Acta Astron. 20, 47 (1970).

    ADS  Google Scholar 

  38. E. I. Staritsin, Astron. Rep. 43, 592 (1999).

    ADS  Google Scholar 

  39. C. de Jager, H. Nieuwenhuijzen, and K. A. van der Hucht, Astron. Astrophys. Supp. Ser. 72, 259 (1988).

  40. J. S. Vink, A. de Koter, and H. J. Lamers, Astron. Astrophys. 362, 295 (2000).

    ADS  Google Scholar 

  41. E. I. Staritsin, Astron. Lett. 36, 796 (2010).

    Article  ADS  Google Scholar 

  42. L. D. Land au and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  43. E. I. Staritsin, Astron. Rep. 45, 467 (2001).

    Article  ADS  Google Scholar 

  44. M. Zboril and P. North, Astron. Astrophys. 345, 244 (1999).

    ADS  Google Scholar 

  45. C. Aerts, J. Christensen-Dalsgaard, and D. W. Kurtz, Asteroseismology, Astronomy and Astrophysics Library (Springer, Heidelberg, 2010).

    Google Scholar 

  46. E. Moravveji, Proc. IAU Symp. 307, 185 (2015).

    ADS  Google Scholar 

  47. A. Miglio, J. Montalban, A. Noels, and P. Eggenberger, Mon. Not. R. Astron. Soc. 386, 1487 (2008).

    Article  ADS  Google Scholar 

  48. E. Moravveji, C. Aerts, P. I. Papics, S. A. Triana, and B. Vand oren, Astron. Astrophys. 580, 27 (2015).

  49. E. Moravveji, R. H. D. Townsend, C. Aerts, and S. Mathis, Astrophys. J. 823, 130 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Staritsin.

Additional information

Original Russian Text © E.I. Staritsin, 2017, published in Astronomicheskii Zhurnal, 2017, Vol. 94, No. 5, pp. 447–458.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staritsin, E.I. Partial mixing in early-type main-sequence B stars. Astron. Rep. 61, 450–460 (2017). https://doi.org/10.1134/S1063772917050079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772917050079

Navigation