Skip to main content
Log in

The Geneva stellar evolution code

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This paper presents the Geneva stellar evolution code with special emphasis on the modeling of solar-type stars. The basic input physics used in the Geneva code as well as the modeling of atomic diffusion is first discussed. The physical description of rotation is then presented. Finally, the modeling of magnetic instabilities and transport of angular momentum by internal gravity waves is briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, D.R., Ferguson, J.W.: Low-temperature Rosseland opacities. Astrophys. J. 437, 879–891 (1994). DOI 10.1086/175039

    Article  ADS  Google Scholar 

  • Angulo, C., Arnould, M., Rayet, M., Descouvemont, P., Baye, D., Leclercq-Willain, C., Coc, A., Barhoumi, S., Aguer, P., Rolfs, C., Kunz, R., Hammer, J.W., Mayer, A., Paradellis, T., Kossionides, S., Chronidou, C., Spyrou, K., degl’Innocenti, S., Fiorentini, G., Ricci, B., Zavatarelli, S., Providencia, C., Wolters, H., Soares, J., Grama, C., Rahighi, J., Shotter, A., Lamehi Rachti, M.: A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 656, 3–183 (1999)

    Article  ADS  Google Scholar 

  • Asplund, M., Grevesse, N., Sauval, A.J., Allende Prieto, C., Kiselman, D.: Line formation in solar granulation. IV. [O I], O I and OH lines and the photospheric O abundance. Astron. Astrophys. 417, 751–768 (2004). DOI 10.1051/0004-6361:20034328

    Article  ADS  Google Scholar 

  • Behrend, R., Maeder, A.: Formation of massive stars by growing accretion rate. Astron. Astrophys. 373, 190–198 (2001). DOI 10.1051/0004-6361:20010585

    Article  ADS  Google Scholar 

  • Böhm-Vitense, E.: Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte mit 5 Textabbildungen. Z. Astrophys. 46, 108 (1958)

    ADS  Google Scholar 

  • Bouvier, J., Forestini, M., Allain, S.: The angular momentum evolution of low-mass stars. Astron. Astrophys. 326, 1023–1043 (1997)

    ADS  Google Scholar 

  • Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O., Morrow, C.A.: Inferring the sun’s internal angular velocity from observed p-mode frequency splittings. Astrophys. J. 343, 526–546 (1989). DOI 10.1086/167727

    Article  ADS  Google Scholar 

  • Carrier, F., Eggenberger, P., Bouchy, F.: New seismological results on the G0 IV η Bootis. Astron. Astrophys. 434, 1085–1095 (2005). DOI 10.1051/0004-6361:20042140

    Article  ADS  Google Scholar 

  • Chaboyer, B., Zahn, J.P.: Effect of horizontal turbulent diffusion on transport by meridional circulation. Astron. Astrophys. 253, 173–177 (1992)

    MATH  ADS  Google Scholar 

  • Chaboyer, B., Demarque, P., Pinsonneault, M.H.: Stellar models with microscopic diffusion and rotational mixing. 1: Application to the Sun. Astrophys. J. 441, 865–875 (1995). DOI 10.1086/175408

    Article  ADS  Google Scholar 

  • Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, 3rd ed. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  • Charbonnel, C., Däppen, W., Schaerer, D., Bernasconi, P.A., Maeder, A., Meynet, G., Mowlavi, N.: Grids of stellar models. VIII. From 0.4 to 1.0 M at Z=0.020 and Z=0.001, with the MHD equation of state. Astron. Astrophys. Suppl. Ser. 135, 405–413 (1999)

    Article  ADS  Google Scholar 

  • Charbonnel, C., Meynet, G., Maeder, A., Schaerer, D.: Grids of stellar models. VI. Horizontal branch and early asymptotic giant branch for low mass stars (Z=0.020, 0.001). Astron. Astrophys. Suppl. Ser. 115, 339 (1996)

    ADS  Google Scholar 

  • Charbonnel, C., Talon, S.: Influence of gravity waves on the internal rotation and Li abundance of solar-type stars. Science 309, 2189–2191 (2005). DOI 10.1126/science.1116849

    Article  ADS  Google Scholar 

  • Couvidat, S., García, R.A., Turck-Chièze, S., Corbard, T., Henney, C.J., Jiménez-Reyes, S.: The rotation of the deep solar layers. Astrophys. J. 597, L77–L79 (2003). DOI 10.1086/379698

    Article  ADS  Google Scholar 

  • Daeppen, W., Mihalas, D., Hummer, D.G., Mihalas, B.W.: The equation of state for stellar envelopes. III—Thermodynamic quantities. Astrophys. J. 332, 261–270 (1988). DOI 10.1086/166650

    Article  ADS  Google Scholar 

  • de Jager, C., Nieuwenhuijzen, H., van der Hucht, K.A.: Mass loss rates in the Hertzsprung–Russell diagram. Astron. Astrophys. Suppl. Ser. 72, 259–289 (1988)

    ADS  Google Scholar 

  • Dwarkadas, V.V., Owocki, S.P.: Radiatively Driven Winds and the Shaping of Bipolar Luminous Blue Variable Nebulae. Astrophys. J. 581, 1337–1343 (2002). DOI 10.1086/344257

    Article  ADS  Google Scholar 

  • Eddington, A.S.: Circulating currents in rotating stars. Observatory 48, 73–75 (1925)

    ADS  Google Scholar 

  • Eggenberger, P., Carrier, F.: Modeling β Virginis using seismological data. Astron. Astrophys. 449, 293–303 (2006). DOI 10.1051/0004-6361:20052882

    Article  MATH  ADS  Google Scholar 

  • Eggenberger, P., Charbonnel, C., Talon, S., Meynet, G., Maeder, A., Carrier, F., Bourban, G.: Analysis of α Centauri AB including seismic constraints. Astron. Astrophys. 417, 235–246 (2004). DOI 10.1051/0004-6361:20034203

    Article  ADS  Google Scholar 

  • Eggenberger, P., Carrier, F., Bouchy, F.: Models of Procyon A including seismic constraints. New Astron. 10, 195–208 (2005a). DOI 10.1016/j.newast.2004.10.002

    Article  ADS  Google Scholar 

  • Eggenberger, P., Maeder, A., Meynet, G.: Stellar evolution with rotation and magnetic fields. IV. The solar rotation profile. Astron. Astrophys. 440, L9–L12 (2005b). DOI 10.1051/0004-6361:200500156

    Article  ADS  Google Scholar 

  • Ekström, S., Meynet, G., Maeder, A.: CNO production in first generation stars. ArXiv Astrophysics e-prints (2006)

  • Graboske, H.C., Dewitt, H.E., Grossman, A.S., Cooper, M.S.: Screening factors for nuclear reactions. 11. Intermediate screening and astrophysical applications. Astrophys. J. 181, 457–474 (1973)

    Article  ADS  Google Scholar 

  • Grevesse, N., Noels, A.: Cosmic Abundances of the Elements. In: Prantzos, N., Vangioni-Flam, E., Casse, M. (eds.) Origin and Evolution of the Elements: Proceedings of a Symposium in Honour of H. Reeves, Paris, 22–25 June 1992, vol. 14, p. 14. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  • Grevesse, N., Sauval, A.J.: Standard solar composition. Space Sci. Rev. 85, 161–174 (1998)

    Article  ADS  Google Scholar 

  • Hirschi, R., Meynet, G., Maeder, A.: Stellar evolution with rotation. XII. Pre-supernova models. Astron. Astrophys. 425, 649–670 (2004). DOI 10.1051/0004-6361:20041095

    Article  MATH  ADS  Google Scholar 

  • Hummer, D.G., Mihalas, D.: The equation of state for stellar envelopes. I—an occupation probability formalism for the truncation of internal partition functions. Astrophys. J. 331, 794–814 (1988). DOI 10.1086/166600

    Article  ADS  Google Scholar 

  • Iglesias, C.A., Rogers, F.J.: Updated opal opacities. Astrophys. J. 464, 943 (1996). DOI 10.1086/177381

    Article  ADS  Google Scholar 

  • Kawaler, S.D.: Angular momentum loss in low-mass stars. Astrophys. J. 333, 236–247 (1988). DOI 10.1086/166740

    Article  ADS  Google Scholar 

  • Kim, Y.C., Demarque, P.: The theoretical calculation of the Rossby number and the “Nonlocal” convective overturn time for pre-main-sequence and early post-main-sequence stars. Astrophys. J. 457, 340 (1996). DOI 10.1086/176733

    Article  ADS  Google Scholar 

  • Kosovichev, A.G., Schou, J., Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Aloise, J., Bacon, L., Burnette, A., de Forest, C., Giles, P.M., Leibrand, K., Nigam, R., Rubin, M., Scott, K., Williams, S.D., Basu, S., Christensen-Dalsgaard, J., Dappen, W., Rhodes, E.J., Duvall, T.L., Howe, R., Thompson, M.J., Gough, D.O., Sekii, T., Toomre, J., Tarbell, T.D., Title, A.M., Mathur, D., Morrison, M., Saba, J.L.R., Wolfson, C.J., Zayer, I., Milford, P.N.: Structure and rotation of the solar interior: initial results from the MDI medium-L program. Sol. Phys. 170, 43–61 (1997)

    Article  ADS  Google Scholar 

  • Kudritzki, R.P., Pauldrach, A., Puls, J.: Radiation driven winds of hot luminous stars. II—Wind models for O-stars in the Magellanic Clouds. Astron. Astrophys. 173, 293–298 (1987)

    ADS  Google Scholar 

  • Lamers, H.J.G.L.M., Snow, T.P., Lindholm, D.M.: Terminal velocities and the bistability of stellar winds. Astrophys. J. 455, 269 (1995). DOI 10.1086/176575

    Article  ADS  Google Scholar 

  • Leitherer, C., Robert, C., Drissen, L.: Deposition of mass, momentum, and energy by massive stars into the interstellar medium. Astrophys. J. 401, 596–617 (1992). DOI 10.1086/172089

    Article  ADS  Google Scholar 

  • Maeder, A.: Evolution of chemical abundances in massive stars. I—OB stars, Hubble–Sandage variables and Wolf–Rayet stars—Changes at stellar surfaces and galactic enrichment by stellar winds. II—Abundance anomalies in Wolf–Rayet stars in relation with cosmic rays and 22/Ne in meteorites. Astron. Astrophys. 120, 113–135 (1983)

    ADS  Google Scholar 

  • Maeder, A.: Changes of surface chemistry for standard massive star evolution—Cartography in the HR diagram. Astron. Astrophys. 173, 247–262 (1987)

    ADS  Google Scholar 

  • Maeder, A.: Stellar evolution with rotation. IX. The effects of the production of asymmetric nebulae on the internal evolution. Astron. Astrophys. 392, 575–584 (2002). DOI 10.1051/0004-6361:20020938

    Article  ADS  Google Scholar 

  • Maeder, A.: Stellar rotation: Evidence for a large horizontal turbulence and its effects on evolution. Astron. Astrophys. 399, 263–269 (2003). DOI 10.1051/0004-6361:20021731

    Article  ADS  Google Scholar 

  • Maeder, A., Desjacques, V.: The shape of η Carinae and LBV nebulae. Astron. Astrophys. 372, L9–L12 (2001). DOI 10.1051/0004-6361:20010539

    Article  ADS  Google Scholar 

  • Maeder, A., Meynet, G.: Grids of evolutionary models of massive stars with mass loss and overshooting—Properties of Wolf–Rayet stars sensitive to overshooting. Astron. Astrophys. 182, 243–263 (1987)

    ADS  Google Scholar 

  • Maeder, A., Meynet, G.: Grids of evolutionary models from 0.85 to 120 solar masses—Observational tests and the mass limits. Astron. Astrophys. 210, 155–173 (1989)

    ADS  Google Scholar 

  • Maeder, A., Meynet, G.: Stellar evolution with rotation. VI. The Eddington and Omega-limits, the rotational mass loss for OB and LBV stars. Astron. Astrophys. 361, 159–166 (2000)

    ADS  Google Scholar 

  • Maeder, A., Meynet, G.: Stellar evolution with rotation. VII. Low metallicity models and the blue to red supergiant ratio in the SMC. Astron. Astrophys. 373, 555–571 (2001). DOI 10.1051/0004-6361:20010596

    Article  ADS  Google Scholar 

  • Maeder, A., Meynet, G.: Stellar evolution with rotation and magnetic fields. I. The relative importance of rotational and magnetic effects. Astron. Astrophys. 411, 543–552 (2003). DOI 10.1051/0004-6361:20031491

    Article  ADS  Google Scholar 

  • Maeder, A., Meynet, G.: Evolution of massive stars with rotation and mass loss (invited review). In: Maeder, A., Eenens, P. (eds.) IAU Symposium, p. 500 (2004a)

  • Maeder, A., Meynet, G.: Stellar evolution with rotation and magnetic fields. II. General equations for the transport by Tayler–Spruit dynamo. Astron. Astrophys. 422, 225–237 (2004b). DOI 10.1051/0004-6361:20034583

    Article  ADS  Google Scholar 

  • Maeder, A., Meynet, G.: Stellar evolution with rotation and magnetic fields. III. The interplay of circulation and dynamo. Astron. Astrophys. 440, 1041–1049 (2005). DOI 10.1051/0004-6361:20053261

    Article  ADS  Google Scholar 

  • Maeder, A., Zahn, J.P.: Stellar evolution with rotation. III. Meridional circulation with MU-gradients and non-stationarity. Astron. Astrophys. 334, 1000–1006 (1998)

    ADS  Google Scholar 

  • Maeder, A., Meynet, G., Hirschi, R.: Evolution of the Most Massive Stars. In: Humphreys, R., Stanek, K. (eds.) ASP Conf. Ser. vol. 332: The Fate of the Most Massive Stars, p. 3 (2005)

  • Mathis, S., Palacios, A., Zahn, J.P.: On shear-induced turbulence in rotating stars. Astron. Astrophys. 425, 243–247 (2004). DOI 10.1051/0004-6361:20040279

    Article  ADS  Google Scholar 

  • Meynet, G., Arnould, M.: Synthesis of 19F in Wolf–Rayet stars. Astron. Astrophys. 355, 176–180 (2000)

    ADS  Google Scholar 

  • Meynet, G., Maeder, A.: Stellar evolution with rotation. I. The computational method and the inhibiting effect of the μ-gradient. Astron. Astrophys. 321, 465–476 (1997)

    ADS  Google Scholar 

  • Meynet, G., Maeder, A., Schaller, G., Schaerer, D., Charbonnel, C.: Grids of massive stars with high mass loss rates. V. From 12 to 120 M at Z=0.001, 0.004, 0.008, 0.020 and 0.040. Astron. Astrophys. Suppl. Ser. 103, 97–105 (1994)

    ADS  Google Scholar 

  • Meynet, G., Arnould, M., Prantzos, N., Paulus, G.: Contribution of Wolf–Rayet stars to the synthesis of 26Al. I. The γ-ray connection. Astron. Astrophys. 320, 460–468 (1997)

    ADS  Google Scholar 

  • Meynet, G., Maeder, A., Mowlavi, N.: Diffusion in stellar interiors: Critical tests of three numerical methods. Astron. Astrophys. 416, 1023–1036 (2004). DOI 10.1051/0004-6361:20031735

    Article  ADS  Google Scholar 

  • Meynet, G., Ekström, S., Maeder, A.: The early star generations: the dominant effect of rotation on the CNO yields. Astron. Astrophys. 447, 623–639 (2006). DOI 10.1051/0004-6361:20053070

    Article  ADS  Google Scholar 

  • Mihalas, D., Dappen, W., Hummer, D.G.: The equation of state for stellar envelopes. II—Algorithm and selected results. Astrophys. J. 331, 815–825 (1988). DOI 10.1086/166601

    Article  ADS  Google Scholar 

  • Mowlavi, N., Schaerer, D., Meynet, G., Bernasconi, P.A., Charbonnel, C., Maeder, A.: Grids of stellar models. VII. From 0.8 to 60 M at Z=0.10. Astron. Astrophys. Suppl. Ser. 128, 471–474 (1998)

    Article  ADS  Google Scholar 

  • Palacios, A., Talon, S., Charbonnel, C., Forestini, M.: Rotational mixing in low-mass stars. I Effect of the μ-gradients in main sequence and subgiant Pop I stars. Astron. Astrophys. 399, 603–616 (2003). DOI 10.1051/0004-6361:20021759

    Article  ADS  Google Scholar 

  • Paquette, C., Pelletier, C., Fontaine, G., Michaud, G.: Diffusion coefficients for stellar plasmas. Astron. Astrophys. Suppl. Ser. 61, 177–195 (1986). DOI 10.1086/191111

    ADS  Google Scholar 

  • Pinsonneault, M.H., Kawaler, S.D., Sofia, S., Demarque, P.: Evolutionary models of the rotating sun. Astrophys. J. 338, 424–452 (1989). DOI 10.1086/167210

    Article  ADS  Google Scholar 

  • Pitts, E., Tayler, R.J.: The adiabatic stability of stars containing magnetic fields. IV—The influence of rotation. Mon. Not. Roy. Astron. Soc. 216, 139–154 (1985)

    ADS  Google Scholar 

  • Reimers, D.: Circumstellar absorption lines and mass loss from red giants. Memoires Soc. Roy. Sci. Liège 8, 369–382 (1975)

    ADS  Google Scholar 

  • Richard, D., Zahn, J.P.: Turbulence in differentially rotating flows. What can be learned from the Couette–Taylor experiment. Astron. Astrophys. 347, 734–738 (1999)

    ADS  Google Scholar 

  • Richard, O., Vauclair, S., Charbonnel, C., Dziembowski, W.A.: New solar models including helioseismological constraints and light-element depletion. Astron. Astrophys. 312, 1000–1011 (1996)

    ADS  Google Scholar 

  • Rogers, F.J., Nayfonov, A.: Updated and expanded OPAL equation-of-state tables: implications for helioseismology. Astrophys. J. 576, 1064–1074 (2002). DOI 10.1086/341894

    Article  ADS  Google Scholar 

  • Rogers, F.J., Swenson, F.J., Iglesias, C.A.: OPAL equation-of-state tables for astrophysical applications. Astrophys. J. 456, 902 (1996). DOI 10.1086/176705

    Article  ADS  Google Scholar 

  • Saar, S.H.: Recent magnetic fields measurements of stellar. In: IAU Symp., vol. 176: Stellar Surface Structure, p. 237 (1996)

  • Schaerer, D., Meynet, G., Maeder, A., Schaller, G.: Grids of stellar models. II—From 0.8 to 120 solar masses at Z=0.008. Astron. Astrophys. Suppl. Ser. 98, 523–527 (1993)

    ADS  Google Scholar 

  • Schaller, G., Schaerer, D., Meynet, G., Maeder, A.: New grids of stellar models from 0.8 to 120 solar masses at Z=0.020 and Z=0.001. Astron. Astrophys. Suppl. Ser. 96, 269–331 (1992)

    ADS  Google Scholar 

  • Schatzman, E., Maeder, A., Angrand, F., Glowinski, R.: Stellar evolution with turbulent diffusion mixing. III—The solar model and the neutrino problem. Astron. Astrophys. 96, 1–2 (1981)

    ADS  Google Scholar 

  • Seaton, M.J., Yan, Y., Mihalas, D., Pradhan, A.K.: Opacities for stellar envelopes. Mon. Not. Roy. Astron. Soc. 266, 805 (1994)

    ADS  Google Scholar 

  • Spruit, H.C.: Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002). DOI 10.1051/0004-6361:20011465

    Article  ADS  Google Scholar 

  • Stauffer, J.R., Hartmann, L.W.: The distribution of rotational velocities for low-mass stars in the Pleiades. Astrophys. J. 318, 337–355 (1987). DOI 10.1086/165371

    Article  ADS  Google Scholar 

  • Talon, S.: Hydrodynamique des étoiles en rotation. Ph.D. thesis (1997)

  • Talon, S., Charbonnel, C.: Hydrodynamical stellar models including rotation, internal gravity waves, and atomic diffusion. I. Formalism and tests on Pop I dwarfs. Astron. Astrophys. 440, 981–994 (2005). DOI 10.1051/0004-6361:20053020

    Article  ADS  Google Scholar 

  • Talon, S., Zahn, J.P., Maeder, A., Meynet, G.: Rotational mixing in early-type stars: the main-sequence evolution of a 9 M star. Astron. Astrophys. 322, 209–217 (1997)

    ADS  Google Scholar 

  • Talon, S., Kumar, P., Zahn, J.P.: Angular momentum extraction by gravity waves in the Sun. Astrophys. J. 574, L175–L178 (2002). DOI 10.1086/342526

    Article  ADS  Google Scholar 

  • Turcotte, S., Richer, J., Michaud, G., Iglesias, C.A., Rogers, F.J.: Consistent solar evolution model including diffusion and radiative acceleration effects. Astrophys. J. 504, 539 (1998). DOI 10.1086/306055

    Article  ADS  Google Scholar 

  • Vink, J.S., de Koter, A., Lamers, H.J.G.L.M.: Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001). DOI 10.1051/0004-6361:20010127

    Article  ADS  Google Scholar 

  • Vogt, H.: Das Strahlungsgleichgewicht rotierender und äußeren Kräften unterworfener Sterne. Astron. Nachrichten 227, 325 (1926)

    Article  MATH  ADS  Google Scholar 

  • Zahn, J.P.: Circulation and turbulence in rotating stars. Astron. Astrophys. 265, 115–132 (1992)

    ADS  Google Scholar 

  • Zahn, J.P., Talon, S., Matias, J.: Angular momentum transport by internal waves in the solar interior. Astron. Astrophys. 322, 320–328 (1997)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Eggenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggenberger, P., Meynet, G., Maeder, A. et al. The Geneva stellar evolution code. Astrophys Space Sci 316, 43–54 (2008). https://doi.org/10.1007/s10509-007-9511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-007-9511-y

Keywords

Navigation