Skip to main content

Pre-supernova Evolution and Nucleosynthesis in Massive Stars and Their Stellar Wind Contribution

  • Reference work entry
  • First Online:
Handbook of Supernovae

Abstract

In this chapter, we review the modelling and pre-supernova evolution of massive stars with a particular emphasis on the effects of rotation and mass loss. We then present the stellar wind contribution to nucleosynthesis and the production of weak s-process at various metallicities (Z). We also review the transition between intermediate-mass and massive stars and the major nuclear and stellar uncertainties involved. Rotation and mass loss both have a strong impact on the evolution and nucleosynthesis in massive stars. The effects of rotation on pre-supernova models are most spectacular for stars between 15 and 25 M . For M > 30M , mass loss dominates over the effects of rotation. Massive stars near solar metallicity lose more than half their initial mass for stars more massive than 20 M . The stellar wind contribution to nucleosynthesis consists mostly of hydrogen-burning products and to a smaller extent helium-burning products since mass loss is generally small during the advanced phases.

At low and very low Z, one expects mass loss and the production of secondary elements like 14N to decrease and gradually become negligible. Rotation changes this picture. For the most massive stars (\(M\gtrsim 60\,M_{\odot }\)), primary production of CNO elements raises the overall metallicity of the surface drastically, and significant mass loss may occur during the red supergiant stage. The production of primary 14N and also 22Ne in rotating massive stars at low Z opens the door to produce s-process elements at low Z. The strong dependence of the production of the barium peak on metallicity and initial rotation rate means that rotating models provide a natural explanation for the observed scatter in the strontium over barium ratio ([Sr/Ba]) at low metallicities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arnett WD, Thielemann FK (1985) Hydrostatic nucleosynthesis. I – Core helium and carbon burning. Astrophys J 295:589–619

    Article  ADS  Google Scholar 

  • Arnett WD, Meakin C, Viallet M, Campbell SW, Lattanzio JC, Mocák M (2015) Beyond mixing-length theory: a step toward 321D. Astrophys J 809:30. doi:10.1088/0004-637X/809/1/30, 1503.00342

  • Baraffe I, Takahashi K (1993) Contribution to the heavy-element abundances in the Galactic halo from s-process nucleosynthesis in massive stars. Astron Astrophys 280:476–485

    ADS  Google Scholar 

  • Baraffe I, El Eid MF, Prantzos N (1992) The s-process in massive stars of variable composition. Astron Astrophys 258:357–367

    ADS  Google Scholar 

  • Barbuy B, Zoccali M, Ortolani S, Hill V, Minniti D, Bica E,Renzini A, Gómez A (2009) VLT-FLAMES analysis of 8 giants in the bulge metal-poor globular cluster NGC 6522: oldest cluster in the Galaxy? Analysis of 8 giants in NGC 6522. Astron Astrophys 507:405–415. doi:10.1051/0004-6361/200912748, 0908.3603

  • Barbuy B, Chiappini C, Cantelli E, Depagne E, Pignatari M, Hirschi R, Cescutti G, Ortolani S, Hill V, Zoccali M, Minniti D, Trevisan M, Bica E, Gómez A (2014) High-resolution abundance analysis of red giants in the globular cluster NGC 6522. Astron Astrophys 570:A76. doi:10.1051/0004-6361/201424311, 1408.2438

  • Bennett ME, Hirschi R, Pignatari M, Diehl S, Fryer C, Herwig F, Hungerford A, Nomoto K, Rockefeller G, Timmes FX, Wiescher M (2012) The effect of 12C +12C rate uncertainties on the evolution and nucleosynthesis of massive stars. Mon Not R Astron Soc 420:3047–3070. doi:10.1111/j.1365-2966.2012.20193.x, 1201.1225

  • Brüggen M, Hillebrandt W (2001) Three-dimensional simulations of shear instabilities in magnetized flows. Mon Not R Astron Soc 323:56–66

    Article  ADS  Google Scholar 

  • Braithwaite J (2006) A differential rotation driven dynamo in a stably stratified star. Astron Astrophys 449:451–460. doi:10.1051/0004-6361:20054241, arXiv:astro-ph/0509693

  • Canuto VM (2002) Critical Richardson numbers and gravity waves. Astron Astrophys 384:1119–1123

    Article  ADS  Google Scholar 

  • Cescutti G, Chiappini C, Hirschi R, Meynet G, Frischknecht U (2013) The s-process in the galactic halo: the fifth signature of spinstars in the early Universe? Astron Astrophys 553:A51 doi:10.1051/0004-6361/201220809, 1302.4354

  • Cescutti G, Romano D, Matteucci F, Chiappini C, Hirschi R (2015) The role of neutron star mergers in the chemical evolution of the galactic halo. ArXiv e-prints 1503.02954

    Google Scholar 

  • Chaboyer B, Zahn JP (1992) Effect of horizontal turbulent diffusion on transport by meridional circulation. Astron Astrophys 253:173–177

    ADS  MATH  Google Scholar 

  • Chiappini C, Hirschi R, Meynet G, Ekström S, Maeder A, Matteucci F (2006) A strong case for fast stellar rotation at very low metallicities. Astron Astrophys 449:L27–L30. doi:10.1051/0004-6361:20064866, astro-ph/0602459

  • Chiappini C, Frischknecht U, Meynet G, Hirschi R, Barbuy B, Pignatari M, Decressin T, Maeder A (2011) Imprints of fast-rotating massive stars in the galactic bulge. Nature 472:454–457. doi:10.1038/nature10000

    Article  ADS  Google Scholar 

  • Chieffi A, Limongi M (2004) Explosive yields of massive stars from Z = 0 to Z = Z . Astrophys J 608:405–410. doi:10.1086/392523

    Article  ADS  Google Scholar 

  • Chieffi A, Limongi M (2013) Pre-supernova evolution of rotating solar metallicity stars in the mass range 13–120 M⊙ and their explosive yields. Astrophys J 764:21. doi:10.1088/0004-637X/764/1/21

    Article  ADS  Google Scholar 

  • Chieffi A, Limongi M, Straniero O (1998) The evolution of a 25 Mo star from the main sequence up to the onset of the iron core collapse. Astrophys J 502:737

    Article  ADS  Google Scholar 

  • Cristini A, Meakin C, Hirschi R, Arnett D, Georgy C, Viallet M (2017, submitted) 3D hydrodynamic simulations of the carbon shell in a massive star. MNRAS

    Google Scholar 

  • Crowther PA (2001) Stellar winds from massive stars. In: Vanbeveren D (ed) The influence of binaries on stellar population studies, astrophysics and space science library. vol 264. Springer, p 215. arXiv:astro-ph/0010581, ISBN:0792371046

    Google Scholar 

  • Crowther PA, Schnurr O, Hirschi R, Yusof N, Parker RJ, Goodwin SP, Kassim HA (2010) The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150Mo stellar mass limit. Mon Not R Astron Soc 408:731–751. doi:10.1111/j.1365-2966.2010.17167.x, 1007.3284

  • de Jager C, Nieuwenhuijzen H, van der Hucht KA (1988) Mass loss rates in the Hertzsprung-Russell diagram. Astron Astrophys Suppl 72:259–289

    ADS  Google Scholar 

  • Diehl R, Halloin H, Kretschmer K, Lichti GG, Schönfelder V, Strong AW, von Kienlin A, Wang W, Jean P, Knödlseder J, Roques JP, Weidenspointner G, Schanne S, Hartmann DH, Winkler C, Wunderer C (2006) Radioactive 26Al from massive stars in the galaxy. Nature 439:45–47. doi:10.1038/nature04364, astro-ph/0601015

  • Edelmann PVF, Roepke FK, Hirschi R, Georgy C, Jones S (2017, submitted) Testing a one-dimensional prescription of dynamical shear mixing with a two-dimensional hydrodynamic simulation. Astron Astrophys

    Google Scholar 

  • Eggenberger P, Meynet G, Maeder A, Hirschi R, Charbonnel C, Talon S, Ekström S (2007) The Geneva stellar evolution code. Astrophys Space Sci 263. doi:10.1007/s10509-007-9511-y

  • Ekström S, Meynet G, Chiappini C, Hirschi R, Maeder A (2008, accepted) Effects of rotation on the evolution of primordial stars. Astron Astrophys 489:685–698. doi:10.1051/0004-6361:200809633, 0807.0573

  • Ekström S, Georgy C, Eggenberger P, Meynet G, Mowlavi N, Wyttenbach A, Granada A, Decressin T, Hirschi R, Frischknecht U, Charbonnel C, Maeder A (2012) Grids of stellar models with rotation. I. Models from 0.8 to 120 solar masses at solar metallicity (Z = 0.014). Astron Astrophys 537:A146. doi:10.1051/0004-6361/201117751, 1110.5049

  • El Eid MF, Meyer BS, The LS (2004) Evolution of massive stars up to the end of central oxygen burning. Astrophys J 611:452–465. doi:10.1086/422162, arXiv:astro-ph/0407459

  • Eldridge JJ, Vink JS (2006) Implications of the metallicity dependence of Wolf-Rayet winds. Astron Astrophys 452:295–301. doi:10.1051/0004-6361:20065001, arXiv:astro-ph/0603188

  • Ertl T, Janka H-T, Woosley SE, Sukhbold T, Ugliano M (2016) A two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism. Astrophys J 818:124. doi:10.3847/0004-637X/818/2/124

    Article  ADS  Google Scholar 

  • Fricke K (1968) Instabilität stationärer rotation in sternen. Zeitschrift fur Astrophysics 68:317

    ADS  Google Scholar 

  • Frischknecht U, Hirschi R, Meynet G, Ekström S, Georgy C, Rauscher T, Winteler C, Thielemann FK (2010) Constraints on rotational mixing from surface evolution of light elements in massive stars. Astron Astrophys 522:A39. doi:10.1051/0004-6361/201014340, 1007.1779

  • Frischknecht U, Hirschi R, Thielemann FK (2012) Non-standard s-process in low metallicity massive rotating stars. Astron Astrophys 538:L2. doi:10.1051/0004-6361/201117794, 1112.5548

  • Frischknecht U, Hirschi R, Pignatari M, Maeder A, Meynet G, Chiappini C, Thielemann FK, Rauscher T, Georgy C, Ekström S (2016) S-process production in rotating massive stars at solar and low metallicities. Mon Not R Astron Soc 456:1803–1825. doi:10.1093/mnras/stv2723, 1511.05730

  • Georgy C, Meynet G, Maeder A (2011) Effects of anisotropic winds on massive star evolution. Astron Astrophys 527:A52. doi:10.1051/0004-6361/200913797, 1011.6581

  • Georgy C, Ekström S, Meynet G, Massey P, Levesque EM, Hirschi R, Eggenberger P, Maeder A (2012) Grids of stellar models with rotation. II. WR populations and supernovae/GRB progenitors at Z = 0.014. Astron Astrophys 542:A29. doi:10.1051/0004-6361/201118340, 1203.5243

  • Goldreich P, Schubert G (1967) Differential rotation in stars. Astrophys J 150:571

    Article  ADS  Google Scholar 

  • Gräfener G, Hamann WR (2008) Mass loss from late-type WN stars and its Z-dependence. Very massive stars approaching the Eddington limit. Astron Astrophys 482:945–960. doi:10.1051/0004-6361:20066176, 0803.0866

  • Heger A, Langer N (2000) Presupernova evolution of rotating massive stars. II. Evolution of the surface properties. Astrophys J 544:1016–1035. doi:10.1086/317239, arXiv:astro-ph/0005110

  • Heger A, Woosley SE (2010) Nucleosynthesis and evolution of massive metal-free stars. Astrophys J 724:341–373. doi:10.1088/0004-637X/724/1/341, 0803.3161

  • Heger A, Langer N, Woosley SE (2000) Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure. Astrophys J 528:368–396

    Article  ADS  Google Scholar 

  • Heger A, Fryer CL, Woosley SE, Langer N, Hartmann DH (2003) How massive single stars end their life. Astrophys J 591:288–300

    Article  ADS  Google Scholar 

  • Heger A, Woosley SE, Spruit HC (2005) Presupernova evolution of differentially rotating massive stars including magnetic fields. Astrophys J 626:350–363

    Article  ADS  Google Scholar 

  • Hirschi R (2004) Massive rotating stars: the road to supernova explosion. PhD Thesis. http://quasar.physik.unibas.ch/~hirschi/workd/thesis.pdf

  • Hirschi R (2007) Very low-metallicity massive stars: pre-SN evolution models and primary nitrogen production. Astron Astrophys 461:571–583. doi:10.1051/0004-6361:20065356, arXiv:astro-ph/0608170

  • Hirschi R, Maeder A (2010) The GSF instability and turbulence do not account for the relatively low rotation rate of pulsars. Astron Astrophys 519:A16. doi:10.1051/0004-6361/201014222, 1004.5470

  • Hirschi R, Meynet G, Maeder A (2004) Stellar evolution with rotation. XII. Pre-supernova models. Astron Astrophys 425:649–670

    Article  ADS  Google Scholar 

  • Hirschi R, Meynet G, Maeder A (2005) Yields of rotating stars at solar metallicity. Astron Astrophys 433:1013–1022. doi:10.1051/0004-6361:20041554, astro-ph/0412454

  • Hirschi R, Frischknecht U, Thielemann F, Pignatari M, Chiappini C, Ekström S, Meynet G, Maeder A (2008) Stellar evolution in the early universe. In: Hunt LK, Madden S, Schneider R (eds) IAU Symposium, vol 255, pp 297–304. doi:10.1017/S1743921308024976

  • Imbriani G, Limongi M, Gialanella L, Terrasi F, Straniero O, Chieffi A (2001) the 12C(α, γ)16O Reaction rate and the evolution of stars in the mass range 0.8 ≤ = MM ≤ 25. Astrophys J 558:903–915. doi:10.1086/322288, arXiv:astro-ph/0107172

  • Jones S, Hirschi R, Nomoto K, Fischer T, Timmes FX, Herwig F, Paxton B, Toki H, Suzuki T, Martínez-Pinedo G, Lam YH, Bertolli MG (2013) Advanced burning stages and fate of 8-10 M stars. Astrophys J 772:150. doi:10.1088/0004-637X/772/2/150, 1306.2030

  • Käppeler F, Gallino R, Bisterzo S, Aoki W (2011) The s process: nuclear physics, stellar models, and observations. Rev Mod Phys 83:157–194. doi:10.1103/RevModPhys.83.157, 1012.5218

  • Kippenhahn R, Weigert A (1990) Stellar structure and evolution. Springer, New York

    Book  Google Scholar 

  • Kippenhahn R, Weigert A, Hofmeister E (1967) Methods for calculating stellar evolution. In: Alder B, Fernbach S, Rotenberg M (eds) Methods in computational physics, vol 7. Academic Press, New York/London

    Google Scholar 

  • Knobloch E, Spruit HC (1983) The molecular weight barrier and angular momentum transport in radiative stellar interiors. Astron Astrophys 125:59–68

    ADS  MATH  Google Scholar 

  • Krtička J, Owocki SP, Meynet G (2011) Mass and angular momentum loss via decretion disks. Astron Astrophys 527:A84. doi:10.1051/0004-6361/201015951, 1101.1732

  • Langer N (2012) Presupernova evolution of massive single and binary stars. Annu Rev Astron Astrophys 50:107–164. doi:10.1146/annurev-astro-081811-125534, 1206.5443

  • Langer N, Arcoragi JP, Arnould M (1989) Neutron capture nucleosynthesis and the evolution of 15 and 30 solar-mass stars. I. The core helium burning phase. Astron Astrophys 210: 187–197

    ADS  Google Scholar 

  • Limongi M, Straniero O, Chieffi A (2000) Massive stars in the range 13–25 solar masses: evolution and nucleosynthesis. II. The solar metallicity models. Astrophys J Suppl Ser 129:625–664

    Article  ADS  Google Scholar 

  • Maeder A (1992) Stellar yields as a function of initial metallicity and mass limit for black hole formation. Astron Astrophys 264:105–120

    ADS  Google Scholar 

  • Maeder A (1997) Stellar evolution with rotation. II. A new approach for shear mixing. Astron Astrophys 321:134–144

    ADS  Google Scholar 

  • Maeder A (2003) Stellar rotation: evidence for a large horizontal turbulence and its effects on evolution. Astron Astrophys 399:263–269

    Article  ADS  Google Scholar 

  • Maeder A (2009) Physics, formation and evolution of rotating stars. Springer, Berlin/Heidelberg. doi:10.1007/978-3-540-76949-1

    Article  ADS  Google Scholar 

  • Maeder A, Meynet G (2000) Stellar evolution with rotation. VI. The Eddington and Omega-limits, the rotational mass loss for OB and LBV stars. Astron Astrophys 361:159–166

    ADS  Google Scholar 

  • Maeder A, Meynet G (2001) Stellar evolution with rotation. VII. Low metallicity models and the blue to red supergiant ratio in the SMC. Astron Astrophys 373:555–571

    Article  ADS  Google Scholar 

  • Maeder A, Meynet G (2005) Stellar evolution with rotation and magnetic fields. III. The interplay of circulation and dynamo. Astron Astrophys 440:1041–1049. doi:10.1051/0004-6361:20053261

    Article  ADS  Google Scholar 

  • Maeder A, Meynet G (2012) Rotating massive stars: from first stars to gamma ray bursts. Rev Mod Phys 84:25–63. doi:10.1103/RevModPhys.84.25

    Article  ADS  Google Scholar 

  • Maeder A, Zahn J (1998) Stellar evolution with rotation. III. Meridional circulation with MU-gradients and non-stationarity. Astron Astrophys 334:1000–1006

    ADS  Google Scholar 

  • Maeder A, Meynet G, Chiappini C (2015) The first stars: CEMP-no stars and signatures of spinstars. Astron Astrophys 576:A56. doi:10.1051/0004-6361/201424153, 1412.5754

  • Meynet G, Maeder A (1997) Stellar evolution with rotation. I. The computational method and the inhibiting effect of the {mu}-gradient. Astron Astrophys 321:465–476

    ADS  Google Scholar 

  • Meynet G, Maeder A (2002a) Stellar evolution with rotation. VIII. Models at Z = 10−5 and CNO yields for early galactic evolution. Astron Astrophys 390:561–583

    Article  ADS  Google Scholar 

  • Meynet G, Maeder A (2002b) The origin of primary nitrogen in galaxies. Astron Astrophys 381:L25–L28. doi:10.1051/0004-6361:20011554, astro-ph/0111187

  • Meynet G, Maeder A (2003) Stellar evolution with rotation. X. Wolf-Rayet star populations at solar metallicity. Astron Astrophys 404:975–990

    Article  ADS  Google Scholar 

  • Meynet G, Maeder A (2005) Stellar evolution with rotation. XI. Wolf-Rayet star populations at different metallicities. Astron Astrophys 429:581–598

    Article  ADS  Google Scholar 

  • Meynet G, Maeder A, Schaller G, Schaerer D, Charbonnel C (1994) Grids of massive stars with high mass loss rates. V. From 12 to 120 M at Z = 0. 001, 0.004, 0.008, 0.020 and 0.040. Astron Astrophys Suppl 103:97–105

    ADS  Google Scholar 

  • Meynet G, Ekström S, Maeder A (2006) The early star generations: the dominant effect of rotation on the CNO yields. Astron Astrophys 447:623–639. doi:10.1051/0004-6361:20053070

    Article  ADS  Google Scholar 

  • Meynet G, Ekstrom S, Maeder A, Eggenberger P, Saio H, Chomienne V, Haemmerlé L (2013) Models of rotating massive stars: impacts of various prescriptions. In: Goupil M, Belkacem K, Neiner C, Lignières F, Green JJ (eds) Lecture notes in physics, vol 865. Springer, Berlin, pp 3–642, 1301.2487

    Google Scholar 

  • Muijres LE, de Koter A, Vink JS, Krtička J, Kubát J, Langer N (2011) Predictions of the effect of clumping on the wind properties of O-type stars. Astron Astrophys 526:A32. doi:10.1051/0004-6361/201014290

    Article  Google Scholar 

  • Ness M, Asplund M, Casey AR (2014) NGC 6522: a typical globular cluster in the galactic bulge without signatures of rapidly rotating population III stars. Mon Not R Astron Soc 445:2994–2998. doi:10.1093/mnras/stu2144, 1408.0290

  • Nishimura N, Hirschi R, Pignatari M, Herwig F, Beard M, Imbriani G, Görres J, deBoer RJ, Wiescher M (2014) Impact of the uncertainty in α-captures on 22Ne on the weak s-process in massive stars. In: Jeong S, Imai N, Miyatake H, Kajino T (eds) American institute of physics conference series, vol 1594, pp 146–151. doi:10.1063/1.4874059

  • Nomoto K (1984) Evolution of 8-10 solar mass stars toward electron capture supernovae. I. Formation of electron-degenerate O + NE + MG cores. Astrophys J 277:791–805. doi:10.1086/161749

    Article  ADS  Google Scholar 

  • Nomoto K (1987) Evolution of 8-10 solar mass stars toward electron capture supernovae. II. Collapse of an O + NE + MG core. Astrophys J 322:206–214. doi:10.1086/165716

    Article  ADS  Google Scholar 

  • Nugis T, Lamers HJGLM (2000) Mass-loss rates of Wolf-Rayet stars as a function of stellar parameters. Astron Astrophys 360:227–244

    ADS  Google Scholar 

  • O’Connor E, Ott CD (2011) Black hole formation in failing core-collapse supernovae. Astrophys J 730:70. doi:10.1088/0004-637X/730/2/70, 1010.5550

  • Paxton B, Bildsten L, Dotter A, Herwig F, Lesaffre P, Timmes F (2011) Modules for experiments in stellar astrophysics (MESA). Astrophys J Suppl Ser 192:3. doi:10.1088/0067-0049/192/1/3, 1009.1622

  • Pignatari M, Gallino R (2008) The weak s-process at low metallicity. In: O’Shea BW, Heger A (eds) First stars III, american institute of physics conference series, vol 990, pp 336–338. doi:10.1063/1.2905575

  • Pignatari M, Gallino R, Meynet G, Hirschi R, Herwig F, Wiescher M (2008) The s-process in massive stars at low metallicity: the effect of primary 14N from fast rotating stars. Astrophys J Lett 687:L95–L98. doi:10.1086/593350, 0810.0182

  • Pignatari M, Gallino R, Heil M, Wiescher M, Käppeler F, Herwig F, Bisterzo S (2010) The weak s-process in massive stars and its dependence on the neutron capture cross sections. Astrophys J 710:1557–1577. doi:10.1088/0004-637X/710/2/1557

    Article  ADS  Google Scholar 

  • Pignatari M, Hirschi R, Wiescher M, Gallino R, Bennett M, Beard M, Fryer C, Herwig F, Rockefeller G, Timmes FX (2013) the 12C +12C Reaction and the impact on nucleosynthesis in massive stars. Astrophys J 762:31. doi:10.1088/0004-637X/762/1/31, 1212.3962

  • Poelarends AJT, Herwig F, Langer N, Heger A (2008) The supernova channel of super-AGB stars. Astrophys J 675:614–625. doi:10.1086/520872, 0705.4643

  • Potter AT, Chitre SM, Tout CA (2012) Stellar evolution of massive stars with a radiative α-Ω dynamo. Mon Not R Astron Soc 424:2358–2370. 1205.6477

    Google Scholar 

  • Prantzos N, Hashimoto M, Nomoto K (1990) The s-process in massive stars – yields as a function of stellar mass and metallicity. Astron Astrophys 234:211–229

    ADS  Google Scholar 

  • Pumo ML, Contino G, Bonanno A, Zappalà RA (2010) Convective overshooting and production of s-nuclei in massive stars during their core He-burning phase. Astron Astrophys 524:A45. doi:10.1051/0004-6361/201015518, 1009.5333

  • Raiteri CM, Busso M, Picchio G, Gallino R (1991) S-process nucleosynthesis in massive stars and the weak component. II. Carbon burning and galactic enrichment. Astrophys J 371:665–672. doi:10.1086/169932

    Article  ADS  Google Scholar 

  • Raiteri CM, Gallino R, Busso M (1992) S-processing in massive stars as a function of metallicity and interpretation of observational trends. Astrophys J 387:263–275. doi:10.1086/171078

    Article  ADS  Google Scholar 

  • Rauscher T, Heger A, Hoffman RD, Woosley SE (2002) Nucleosynthesis in massive stars with improved nuclear and stellar physics. Astrophys J 576:323–348

    Article  ADS  Google Scholar 

  • Rayet M, Hashimoto M (2000) The s-process efficiency in massive stars. Astron Astrophys 354:740–748

    ADS  Google Scholar 

  • Ritossa C, García-Berro E, Iben I Jr (1999) On the evolution of stars that form electron-degenerate cores processed by carbon burning. V. Shell convection sustained by helium burning, transient neon burning, dredge-out, URCA cooling, and other properties of an 11 M_solar population I model star. Astrophys J 515:381–397. doi:10.1086/307017

    Article  ADS  Google Scholar 

  • Smartt SJ (2009) Progenitors of core-collapse supernovae. Annu Rev Astron Astrophys 47:63–106. doi:10.1146/annurev-astro-082708-101737, 0908.0700

  • Spruit HC (2002) Dynamo action by differential rotation in a stably stratified stellar interior. Astron Astrophys 381:923–932

    Article  ADS  Google Scholar 

  • Sukhbold T, Woosley SE (2014) The compactness of presupernova stellar cores. Astrophys J 783:10. doi:10.1088/0004-637X/783/1/10, 1311.6546

  • Sylvester RJ, Skinner CJ, Barlow MJ (1998) Silicate and hydrocarbon emission from galactic M supergiants. Mon Not R Astron Soc 301:1083–1094. doi:10.1046/j.1365-8711.1998.02078.x

    Article  ADS  Google Scholar 

  • Takahashi K, Yoshida T, Umeda H (2013) Evolution of progenitors for electron capture supernovae. Astrophys J 771:28. doi:10.1088/0004-637X/771/1/28, 1302.6402

  • The LS, El Eid MF, Meyer BS (2000) A new study of s-process nucleosynthesis in massive stars. Astrophys J 533:998–1015. doi:10.1086/308677

    Article  ADS  Google Scholar 

  • The LS, El Eid MF, Meyer BS (2007) s-process nucleosynthesis in advanced burning phases of massive stars. Astrophys J 655:1058–1078. doi:10.1086/509753, arXiv:astro-ph/0609788

  • Thielemann FK, Arnett WD (1985) Hydrostatic nucleosynthesis – part two – core neon to silicon burning and presupernova abundance yields of massive stars. Astrophys J 295:604

    Article  ADS  Google Scholar 

  • Travaglio C, Gallino R, Arnone E, Cowan J, Jordan F, Sneden C (2004) Galactic evolution of Sr, Y, and Zr: a multiplicity of nucleosynthetic processes. Astrophys J 601:864–884. doi:10.1086/380507, arXiv:astro-ph/0310189

  • Tur C, Heger A, Austin SM (2009) Dependence of s-process nucleosynthesis in massive stars on triple-alpha and 12C(α, γ)16O reaction rate uncertainties. Astrophys J 702:1068–1077. doi:10.1088/0004-637X/702/2/1068, 0809.0291

  • Umeda H, Nomoto K (2005) Variations in the abundance pattern of extremely metal-poor stars and nucleosynthesis in population III supernovae. Astrophys J 619:427–445. doi:10.1086/426097

    Article  ADS  Google Scholar 

  • van Loon JT, Groenewegen MAT, de Koter A, Trams NR, Waters LBFM, Zijlstra AA, Whitelock PA, Loup C (1999) Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC. Astron Astrophys 351:559–572, arXiv:astro-ph/9909416

    Google Scholar 

  • van Loon JT, Cioni MRL, Zijlstra AA, Loup C (2005) An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich asymptotic giant branch stars. Astron Astrophys 438:273–289. doi:10.1051/0004-6361:20042555, arXiv:astro-ph/0504379

  • Vink JS, de Koter A, Lamers HJGLM (2001) Mass-loss predictions for O and B stars as a function of metallicity. Astron Astrophys 369:574–588. doi:10.1051/0004-6361:20010127

    Article  ADS  Google Scholar 

  • Vink JS, Gräfener G, Harries TJ (2011) In pursuit of gamma-ray burst progenitors: the identification of a sub-population of rotating Wolf-Rayet stars. Astron Astrophys 536:L10. doi:10.1051/0004-6361/201118197, 1111.5806

  • von Zeipel H (1924) The radiative equilibrium of a rotating system of gaseous masses. Mon Not R Astron Soc 84:665

    Article  ADS  Google Scholar 

  • Walder R, Folini D, Meynet G (2011) Magnetic fields in massive stars, their winds, and their nebulae. Space Sci Rev 125. doi:10.1007/s11214-011-9771-2, 1103.3777

  • Wiescher M, Käppeler F, Langanke K (2012) Critical reactions in contemporary nuclear astrophysics. Annu Rev Astron Astrophys 50:165–210. doi:10.1146/annurev-astro-081811-125543

    Article  ADS  Google Scholar 

  • Woosley SE, Heger A (2006) The progenitor stars of gamma-ray bursts. Astrophys J 637:914–921. doi:10.1086/498500

    Article  ADS  Google Scholar 

  • Woosley SE, Heger A (2015) The remarkable deaths of 9-11 solar mass stars. Astrophys J 810:34. doi:10.1088/0004-637X/810/1/34, 1505.06712

  • Yoon SC, Langer N (2005) Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. Astron Astrophys 443:643–648. doi:10.1051/0004-6361:20054030

    Article  ADS  Google Scholar 

  • Yoon SC, Langer N, Norman C (2006) Single star progenitors of long gamma-ray bursts. I. Model grids and redshift dependent GRB rate. Astron Astrophys 460:199–208. doi:10.1051/0004-6361:20065912, arXiv:astro-ph/0606637

  • Yusof N, Hirschi R, Meynet G, Crowther PA, Ekström S, Frischknecht U, Georgy C, Abu Kassim H, Schnurr O (2013) Evolution and fate of very massive stars. Mon Not R Astron Soc 433:1114–1132. doi:10.1093/mnras/stt794, 1305.2099

  • Zahn J, Brun AS, Mathis S (2007) On magnetic instabilities and dynamo action in stellar radiation zones. Astron Astrophys 474:145–154. doi:10.1051/0004-6361:20077653, 0707.3287

  • Zahn JP (1992) Circulation and turbulence in rotating stars. Astron Astrophys 265:115–132

    ADS  Google Scholar 

Download references

Acknowledgements

The author thanks his collaborators at the University of Geneva (G. Meynet, A. Maeder, Sylvia Ekström, and C. Georgy), Basel (U. Frischknecht, F.-K. Thielemann, T. Rauscher), and Hull (M. Pignatari) for their significant contributions to the results presented in this chapter. R. Hirschi acknowledges support from the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and from the Eurogenesis EUROCORE program. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 306901. This article is based upon work from the “ChETEC” COST Action (CA16117), supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Hirschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hirschi, R. (2017). Pre-supernova Evolution and Nucleosynthesis in Massive Stars and Their Stellar Wind Contribution. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-21846-5_82

Download citation

Publish with us

Policies and ethics