Skip to main content
Log in

The binary systems IC 10 X-1 and NGC 300 X-1: Accretion of matter from an intense Wolf–Rayet stellar wind onto a black hole

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The current evolutionary stage of the binary systems IC 10 X-1 and NGC 300 X-1, which contain a massive black hole and a Wolf–Rayet star with a strong stellar wind that does not fill its Roche lobe, is considered. The high X-ray luminosity and X-ray properties testify to the presence of accretion disks in these systems. The consistency of the conditions for the existence of such a disk and the possibility of reproducing the observed X-ray luminosity in the framework of the Bondi–Hoyle–Littleton theory for a spherically symmetric stellar wind is analyzed. A brief review of information about the mass-loss rates of Wolf–Rayet stars and the speeds of their stellar winds is given. The evolution of these systems at the current stage is computed. Estimates made using the derived parameters show that it is not possible to achieve consistency, since the conditions for the existence of an accretion disk require that the speed of the Wolf–Rayetwind be appreciably lower than is required to reproduce the observedX-ray luminosity. Several explanations of this situation are possible: (1) the real pattern of the motion of the stellar-wind material in the binary is substantially more complex than is assumed in the Bondi–Hoyle–Littleton theory, changing the conditions for the formation of an accretion disk and influencing the accretion rate onto the black hole; (2) some of the accreting material leaves the accretor due to X-ray heating; (3) the accretion efficiency in these systems is nearly an order of magnitude lower than in the case of accretion through a thin disk onto a non-rotating black hole; (4) the intensity of the Wolf–Rayet wind is one to two orders of magnitude lower than has been suggested by modern studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. van Kerkwiki, P. A. Charles, T. R. Geballe, D. L. King, G. K. Miley, L. A. Molnar, E. P. J. van den Heuvel, M. van der Klis, and J. van Paradijs, Nature 355, 703 (1992).

    Article  ADS  Google Scholar 

  2. A. M. Cherepashchuk, N. A. Katysheva, T. S. Khruzina, and S. Yu. Shugarov, Highly Evolved Close Binary Stars: Catalogue, Adv. Astron. Astrophys., Vol. 1, Pt. 1 (Gordon and Breach, Amsterdam, 1996), p. 96.

    Google Scholar 

  3. J. M. Silverman and A. V. Filippenko, Astrophys. J. Lett. 678, L17 (2008).

    Article  ADS  Google Scholar 

  4. P. A. Crowther, R. Barnard, S. Carpano, J. S. Clark, V. S. Dhillon, and A. M. T. Pollock, Mon. Not. R. Astron. Soc. 403, L41 (2010).

    Article  ADS  Google Scholar 

  5. P. Esposito, G. L. Israel, L. Sidoli, M. Mapelli, L. Zampieri, and S. E. Motta, Mon. Not. R. Astron. Soc. 436, 3380 (2013).

    Article  ADS  Google Scholar 

  6. T. J. Maccarone, B. D. Lehmer, J. C. Leyder, V. Antoniou, A. Hornschemeier, A. Ptak, D. Wik, and A. Zezas, Mon. Not. R. Astron. Soc. 439, 3064 (2014).

    Article  ADS  Google Scholar 

  7. R. Barnard, J. S. Clark, and U. C. Kolb, Astron. Astrophys. 488, 697 (2008).

    Article  ADS  Google Scholar 

  8. D. Lommen, L. Yungelson, E. van den Heuvel, G. Nelemans, and S. Portegies Zwart, Astron. Astrophys. 443, 231 (2005).

    Article  ADS  Google Scholar 

  9. S. Carpano, A. M. T. Pollock, A. Prestwich, P. Crowther, J. Wilms, L. Yungelson, and M. Ehle, Astron. Astrophys. 466, L17 (2007).

    Article  ADS  Google Scholar 

  10. M. K. Abubekerov, E. A. Antokhina, A. I. Bogomazov, A. M. Cherepashchuk, Astron. Rep. 53, 232 (2009).

    Article  ADS  Google Scholar 

  11. B. Binder, B. F. Williams, M. Eracleous, M. R. Garcia, S. F. Anderson, and T. J. Gaetz, Astrophys. J. 742, 128 (2011).

    Article  ADS  Google Scholar 

  12. T. Bulik, K. Belczynski, and A. Prestwich, Astrophys. J. 730, 140 (2011).

    Article  ADS  Google Scholar 

  13. T. Linden, F. Valsecchi, and V. Kalogera, Astrophys. J. 748, 114 (2012).

    Article  ADS  Google Scholar 

  14. T.-W. Wong, F. Valsecchi, and A. Ansari, Astrophys. J. 790, 119 (2014).

    Article  ADS  Google Scholar 

  15. A. A. Zdziarski, J. Mikolajewska, and K. Belczynski, Mon. Not. R. Astron. Soc. 429, L104 (2013).

    Article  ADS  Google Scholar 

  16. J. M. Silverman and A. V. Filippenko, Astrophys. J. Lett. 678, L17 (2008).

    Article  ADS  Google Scholar 

  17. A. V. Tutukov, A. V. Fedorova, and A. M. Cherepashchuk, Astron. Rep. 57, 657 (2013).

    Article  ADS  Google Scholar 

  18. A. V. Tutukov and L. R. Yungel’son, Astrofizika 12, 521 (1976).

    ADS  Google Scholar 

  19. G. Grafener and W. Hamann, Astron. Astrophys. 432, 633 (2005).

    Article  ADS  Google Scholar 

  20. T. Nugis and H. J. G. L. M. Lamers, Astron. Astrophys. 360, 227 (2000).

    ADS  Google Scholar 

  21. J. D. M. Dewi, O. R. Pols, G. J. Savonije, and E. P. J. van den Heuvel, Mon. Not. R. Astron. Soc. 331, 1027 (2002).

    Article  ADS  Google Scholar 

  22. J. R. Hurley, O. R. Pols, and C. A. Tout, Mon. Not. R. Astron. Soc. 315, 543 (2000).

    Article  ADS  Google Scholar 

  23. S.-C. Yoon and N. Langer, Astron. Astrophys. 443, 643 (2005).

    Article  ADS  Google Scholar 

  24. A. M. Cherepashchuk, Sov. Astron. 34, 481 (1990).

    ADS  Google Scholar 

  25. A. F. Illarionov and R. A. Sunyaev, Astron. Astrophys. 39, 185 (1975).

    ADS  Google Scholar 

  26. E. Ergma and L. R. Yungelson, Astron. Astrophys. 333, 151 (1998).

    ADS  Google Scholar 

  27. A. R. King, in Black Holes in Binaries and Galactic Nuclei: Diagnostics, Demography and Formation, Ed. by L. Kaper, E. P. J. van den Heuvel, and P. A.Woudt (Springer, Berlin, 2001), p. 155.

  28. Ph. Podsiadlowski, Nature 350, 136 (1991).

    Article  ADS  Google Scholar 

  29. A. G. Muslimov and M. J. Sarna, Mon. Not. R. Astron. Soc. 262, 164 (1993).

    Article  ADS  Google Scholar 

  30. I. Negueruela, ASP Conf. Ser. 422, 57 (2010).

    ADS  Google Scholar 

  31. I. V. Igumenshchev, A. F. Illarionov, and D. A. Kompaneets, Mon. Not. R. Astron. Soc. 260, 727 (1993).

    Article  ADS  Google Scholar 

  32. D. A. Leahy and M. Kostka, Mon. Not. R. Astron. Soc. 384, 747 (2008).

    Article  ADS  Google Scholar 

  33. D. R. Gies, C. T. Bolton, R. M. Blake, S. M. Caballero-Nieves, D. M. Crenshaw, P. Hadrava, A. Herrero, T. C. Hillwig, S. B. Howell, and W. Huang, Astrophys. J. 678, 1237 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Fedorova.

Additional information

Original Russian Text © A.V. Tutukov, A.V. Fedorova, 2016, published in Astronomicheskii Zhurnal, 2016, Vol. 93, No. 1, pp. 96–106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutukov, A.V., Fedorova, A.V. The binary systems IC 10 X-1 and NGC 300 X-1: Accretion of matter from an intense Wolf–Rayet stellar wind onto a black hole. Astron. Rep. 60, 106–115 (2016). https://doi.org/10.1134/S1063772915120070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772915120070

Keywords

Navigation