Skip to main content
Log in

Atomic Layer Deposition in the Production of a Gate HkMG Stack Structure with a Minimum Topological Size of 32 nm

  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

The plasma-enhanced atomic layer deposition (PEALD) of a High-K Dielectric and Metal Gate (HkMG) stack for MIS transistors, including the subgate HfO2 (2–4 nm) dielectric layer, the ultrathin metallic stabilizing hafnium nitride HfN (1–3 nm) layer, and the basic metallic gate layer from tantalum nitride ТаN (10–20 nm), on silicon plates with a diameter of 200 mm is studied. The spectral ellipsometry method is applied to measure the homogeneity of the deposited film thickness. The dielectric constant of the dielectric in the stack, the leak current, and the breakdown voltage are examined. The four-probe method is used to study the specific electric resistance of tantalum nitride deposited by the atomic layer deposition ALD method. The film thickness homogeneity as a function of the ALD process parameters is examined. The specific resistance of the metallic TaN layer as a function of the composition and parameters of the plasma discharge are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robertson, J., High dielectric constant gate oxides for metal oxide Si transistors, Rep. Prog. Phys., 2006, vol. 69, p.327.

    Article  Google Scholar 

  2. International Technology Roadmap for Semiconductors, 2013 edition, Process Integration, Devices, and Structures (PIDS), 2013. public.itrs.net.

  3. Yu, H.Y., Ren, C., Yeo, Y.-C., and Kang, J.F., Fermi pinning-induced thermal instability of metal-gate work functions, IEEE Electron. Dev. Lett., 2004, vol. 25, p.337.

    Article  Google Scholar 

  4. Chen, J., Maiti, B., Connelly, D., Mendicino, M., Huang, F., Adetutu, O., Yu, Y., et al., 0.18 µm metal gate fully-depleted SOI MOSFETs for advanced CMOS applications, in Proceedings of the International Symposium on VLSI Technology, Systems, and Applications, 1999, pp. 25–26.

  5. Shimada, H., Ohshima, I., Ushiki, T., Sugawa, S., and Ohmi, T., Tantalum nitride metal gate FD-SOI CMOS FETs using low resistivity self-grown bcc-tantalum layer, IEEE Trans. Electron Dev., 2001, vol. 48, pp. 1619–1626.

    Article  Google Scholar 

  6. Ren, C., Yu, H.Y., Kang, J.F., Hou, Y.T., Li, M.F., Wang, W.D., Chan, D.S.H., and Kwong, D.L., Fermilevel pinning induced thermal instability in the effective work function of TaN in TaN/SiO2 gate stack, IEEE Electron Dev. Lett., 2004, vol. 25, pp. 123–125.

    Article  Google Scholar 

  7. Wang, M.F., Kao, Y.C., Huang, T.Y., Lin, H.C., and Chang, C.Y., Thermal stability of PVD TiN gate and its impacts on characteristic of CMOS transistors, in Proceedings of the International Symposium on Plasma Process-Induced Damage P2ID, 2001, pp. 36–39.

  8. Tsai, C.-H., Lai, Y.-S., and Chen, J.S., Thermal stability of hafnium and hafnium nitride gates on HfO2 gate dielectrics, J. Alloys Compd., 2009, vol. 487, pp. 687–692.

    Article  Google Scholar 

  9. Yu, H., Li, M.-F., and Kwong, D.-L., Thermally robust HfN metal as a promising gate electrode for advanced MOS device applications, IEEE Trans. Electron Dev., 2004, vol. 51, pp. 609–615.

    Article  Google Scholar 

  10. Consiglio, S., Zeng, W., Berliner, N., and Eisenbraun, E.T., Plasma-assisted atomic layer deposition of conductive hafnium nitride using tetrakis(ethylmethylamino) hafnium for CMOS gate electrode applications, J. Electrochem. Soc., 2008, vol. 155, pp. H196–H201.

    Article  Google Scholar 

  11. Yang, C.-T., Chang-Liao, K.-S., Chang, H.-C., Sahu, B.S., et al., Integration of HfxTayN metal gate with SiO2 and HfOxNy gate dielectrics for MOS device applications, Microelectron. Eng., 2007, vol. 84, pp. 2916–2920.

    Article  Google Scholar 

  12. Ando, T., Ultimate scaling of high-k gate dielectrics: higher-k or interfacial layer scavenging?, Materials, 2012, vol. 5, p.478.

    Article  Google Scholar 

  13. Rudenko, K.V., Diagnostics of plasma processes in micro-and nanoelectronics, High Energy Chem., 2009, vol. 43, pp. 196–203.

    Article  Google Scholar 

  14. Sukhanov, Y.N., Ershov, A.P., Rudenko, K.V., and Orlikovsky, A.A., On the parameters of inductively coupled and microwave BF3 plasmas used for plasma immersion ion implantation, Plasma Proces. Polym., 2005, vol. 2, pp. 472–479.

    Article  Google Scholar 

  15. Rudenko, K.V., Myakon’kikh, A.V., Orlikovsky, A.A., and Pustovit, A.N., New method for the langmuir probe diagnostics of polymerizing plasmas, Russ. Microelectron., 2007, vol. 36, pp. 14–26.

    Article  Google Scholar 

  16. Orlikovskii, A.A. and Rudenko, K.V., In situ diagnostics of plasma processes in microelectronics: the current status and immediate prospects. Part I, Russ. Microelectron., 2001, vol. 30, pp. 69–87.

    Article  Google Scholar 

  17. George, S.M., Atomic layer deposition: an overview, Chem. Rev., 2010, vol. 110, pp. 111–131.

    Article  Google Scholar 

  18. Molchanova, A. and Rogozhin, A., Electrical properties of ALD HfO2 (EOT 0.47 nm), Proc. SPIE, 2014, vol. 9440, p. 944004.

    Article  Google Scholar 

  19. Shin, C.-S., Kim, Y.-W., Gall, D., Greene, J.E., and Petrov, I., Phase composition and microstructure of polycrystalline and epitaxial TaNx layers grown on oxidized Si (001) and MgO (001) by reactive magnetron sputter deposition, Thin Solid Films, 2002, vol. 402, pp. 172–182.

    Article  Google Scholar 

  20. Ganin, A.Y., Kienle, L., and Vajenine, G.V., Plasmaenhanced CVD synthesis and structural characterization of Ta2N3, Eur. J. Inorg. Chem., 2004, pp. 3233–3239.

    Google Scholar 

  21. Ritala, M., Kalsi, P., Riihelä, D., Kukli, K., Leskelä, M., and Jokinen, J., Controlled growth of TaN, Ta3N5, and TaOxNy thin films by atomic layer deposition, Chem. Mater., 1999, vol. 11, pp. 1712–1718.

    Article  Google Scholar 

  22. Kim, H., Kellock, A.J., and Rossnagel, S.M., Growth of cubic-TaN thin films by plasma-enhanced atomic layer deposition, J. Appl. Phys., 2002, vol. 92, pp. 7080–7085.

    Article  Google Scholar 

  23. Wu, Y.Y., Kohn, A., and Eizenberg, M., Structures of ultra-thin atomic-layer-deposited TaNx films, J. Appl. Phys., 2004, vol. 95, pp. 6167–6174.

    Article  Google Scholar 

  24. Na, K.-I., Park, S.-J., Jeong, W.-C., Kim, S.-H., Boo, S.-E., Bae, N.-J., and Lee, J.-H., Deposition and characteristics of tantalum nitride films by plasma assisted atomic layer deposition as Cu diffusion barrier, Mater. Res. Soc. Symp. Proc., 2003, vol. 766, pp. E3.22.1–E3.22.6.

    Google Scholar 

  25. Park, J.-S., Park, H.-S., and Kang, S.-W., Plasmaenhanced atomic layer deposition of Ta–N thin films, J. Electrochem. Soc., 2002, vol. 149, pp. C28–C32.

    Article  Google Scholar 

  26. Kim, H., Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing, J. Vac. Sci. Technol. B, 2003, vol. 21, p. 2231.

    Article  Google Scholar 

  27. Langereis, E., Knoops, H.C., Mackus, A.J., Roozeboom, F., Sanden, M.C., et al., Synthesis and in situ characterization of low-resistivity TaNx films by remote plasma atomic layer deposition, J. Appl. Phys., 2007, vol. 102, p. 083517.

    Article  Google Scholar 

  28. Knoops, H.C.M., Baggetto, L., Langereis, E., Sanden, M.C., Klootwijk, J.H., Roozeboom, F., Niessen, R.A.H., Notten, P.H.L., and Kessels, W.M.M., Deposition of TiN and TaN by remote plasma ALD for Cu and Li diffusion barrier applications, J. Electrochem. Soc., 2008, vol. 155, pp. G287–G294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Rudenko.

Additional information

Original Russian Text © K.V. Rudenko, A.V. Myakon’kikh, A.E. Rogozhin, O.P. Gushchin, V.A. Gvozdev, 2018, published in Mikroelektronika, 2018, Vol. 47, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudenko, K.V., Myakon’kikh, A.V., Rogozhin, A.E. et al. Atomic Layer Deposition in the Production of a Gate HkMG Stack Structure with a Minimum Topological Size of 32 nm. Russ Microelectron 47, 1–10 (2018). https://doi.org/10.1134/S1063739718010055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739718010055

Navigation