Skip to main content
Log in

Symmetry and the tentacular apparatus in Cnidaria

  • Review
  • Invertebrate Zoology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

Comparative analysis provides evidence that bilateral symmetry is a primary character of Cnidaria. All anthozoan taxa are characterized by bilateral symmetry. The anthozoan pharyngeal plane is a plane of bilateral symmetry of mesenteries and, at the same time, it is a plane of bilateral symmetry of regulatory gene expression in anthozoan morphogenesis. In Medusozoa, the bilateral symmetry is replaced by radial symmetry, but some hydrozoans (for example, Corymorphidae) demonstrate bilateral symmetry. The bilateral symmetry of Cnidaria is thought to be inherited from the common ancestors of both cnidarians and triploblastic bilaterians. The secondary radial symmetry of Cnidaria evidently is a result of the adaptation to the sessile mode of life. The presence of both the marginal and labial rings of tentacles is supposed to be a plesiomorphic character of Cnidaria. In some groups of cnidarians, one of the tentacle rings may be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleshin, V.V. and Petrov, N.B., Molecular evidence of regression in evolution of Metazoa, Zh. Obshch. Biol., 2002, vol. 63, pp. 195–208.

    CAS  PubMed  Google Scholar 

  2. Beklemishev, V.N., Osnovy sravnitel’noi anatomii bespozvonochnykh, Tom 1. Promorfologiya (Principles of Comparative Anatomy of Invertebrates, Vol. 1: Promorphology), Moscow: Nauka, 1964.

    Google Scholar 

  3. Vladychenskaya, N.S., Kedrova, O.S., Milyutina, I.A., et al., Position of the phylum Placozoa in Metazoa system based on comparison of the 18S ribosomal-RNA gene sequences, Dokl. Akad. Nauk, 1995, vol. 344, no. 1, pp. 1–3.

    Google Scholar 

  4. Ivanovskiy, A.B., Etyudy orannekamennougol’nykh rugozakh (Studies of Early Carboniferous Rugosa), Moscow: Nauka, 1967.

    Google Scholar 

  5. Ivanovskiy, A.B., Rugozy (Rugosa), Moscow: Nauka, 1975.

  6. Ivanovskiy, A.B., Rugosa, in Rify i rifoobrazuyushchie korally (Reefs and Reef-Building Corals), Moscow: Nauka, 1987, pp. 130–140.

    Google Scholar 

  7. Ivantsov, A.Yu., Vendia and other Precambrian “arthropods”, Paleontol. Zh., 2001, no. 4, pp. 3–10.

    Google Scholar 

  8. Ivantsov, A.Yu. and Malakhovskaya, Ya.E., Giant traces of Vendian animals, Dokl. Earth Sci., 2002, vol. 385A, no. 6, pp. 618–622.

    CAS  Google Scholar 

  9. Ivantsov, A.Yu. and Fedonkin, M.A., Traces of selfmaintained movement—a final evidence for animal nature of Ediacaran organisms, Mater. II mezhd. simp. “Evolyutsiya zhizni na Zemle,” Tomsk, 12–15 noyabrya 2001 g. (Proc. II Int. Symp. “Evolution of Life on the Earth,” Tomsk, November 12–15, 2001), Tomsk, 2001, pp. 133–137.

    Google Scholar 

  10. Malakhov, V.V., New ideas on the origin of bilateral animals, Russ. J. Mar. Biol., 2004, vol. 30, no. 1 (suppl.), pp. S22–S33.

    Article  Google Scholar 

  11. Molodtsova, T.N. and Malakhov, V.V., On the biology of Cerianthus lloydii Gosse (Anthozoa, Ceriantharia) from Kraternaya Bight (Kurile Islands), Tr. Zool. Inst., Ross. Akad. Nauk, 1995, vol. 261, pp. 90–94.

    Google Scholar 

  12. Molodtsova, T.N. and Malakhov, V.V., Cerianthus lloydii (Anthozoa, Ceriantharia) from the volcanic ecosystem of Kraternaya Bay. 2. Larval development, Zool. Zh., 1995, vol. 74, no. 11, pp. 4–11.

    Google Scholar 

  13. Naumov, D.V., Gidroidy i gidromeduzy morskikh, solonovatovodnykh i presnovodnykh basseinov SSSR (Hydroids and Hydromedusae of the Marine, Brackish and Freshwater Basins of the Soviet Union), Moscow: Akad. Nauk SSSR, 1960.

    Google Scholar 

  14. Rich., P.V., Rich, T.H., and Fenton, M.A., The Fossil Book: A Record of Prehistoric Life, New York: Dover, 1997.

    Google Scholar 

  15. Fedonkin, M.A., A second birth of Kimberella, Priroda, 1998, no. 1, pp. 3–10.

    Google Scholar 

  16. Fedonkin, M.A., A well to the past 600 million years deep, Nauka v Rossii, 2001, no. 6, pp. 6–15.

    Google Scholar 

  17. Allman, G.J., A Monograph of the Gymnoblastic or Tubularian Hydroids, London: Ray Society, 1872.

    Google Scholar 

  18. Andres, A., Le Actinie, Fauna und Flora des Golfes von Neapel, 1884, vol. 13, pp. 1–459.

    Google Scholar 

  19. Baguna, J., Martinez, P., Paps, J., and Riutort, M., Back in time: a new systematic proposal for the Bilateria, Philos. Trans. R. Soc., B, 2008, vol. 363, pp. 1481–1491.

    Article  CAS  Google Scholar 

  20. Bouillon, J., Gravili, C., Pagè s, F., et al., An introduction to Hydrozoa, Mem. Mus. Natl. Hist. Nat., 2006, vol. 194, pp. 1–591.

    Google Scholar 

  21. Brinkmann-Voss, A., Anthomedusae/Athecatae (Hydrozoa, Cnidaria) of the Mediterranean, Fauna Flora Golfo Napoli, 1970, no. 39, pp. 1–96.

    Google Scholar 

  22. Carlgren, O., Zur Kenntnis der Septenmuskulatur bei Ceriantheen und der Schlundrinnen bei Anthozoen, Öfv. K. Sven. Vetensk.-Akad. Förhandl., Stockholm, 1893, vol. 50, pp. 239–247.

    Google Scholar 

  23. Carlgren, O., Zoantharien, Ergebnisse der Hamburger Magalhaensische Sammelreise, 1899, vol. 1, pp. 1–47.

    Google Scholar 

  24. Carlgren, O., Ceriantharia, Danish Ingolf-Exped., 1912, vol. 1, pt. 3, pp. 1–78.

    Google Scholar 

  25. Carlgren, O., Ueber Ceriantharien des Mittelmeeres, Mitt. Zool. Stat. Neapel, 1912, vol. 20, pp. 356–394.

    Google Scholar 

  26. Carlgren, O., Ceriantharia and Zoantharia, Wiss. Ergeb. Deutsch. Tiefsee-Exped. Dampfer ‘Valdivia’ 1898–1899, 1923, vol. 19, no. 7, pp. 242–337.

    Google Scholar 

  27. Carlgren, O., Die Larven der Ceriantharien, Zoantharien und Actiniarien, Wiss. Ergeb. Deutsch. Tiefsee-Exped. Dampfer ‘Valdivia’ 1898–1899, 1924, vol. 19, pp. 339–476.

    Google Scholar 

  28. Carlgren, O., South African Actiniaria and Zoantharia, K. Sven. Vetensk.-Akad. Handl., 1938, vol. 17, no. 3, pp. 1–148.

    Google Scholar 

  29. Chevalier, J.P. and Beauvais, L., Ordre des Scléractiniaires, in Traitéde zoologie, Cnidaires, Anthozoaires, Paris: Masson, 1987, vol. 3, fasc. 3, pp. 403–764.

    Google Scholar 

  30. Collins, A.G., Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence, Proc. Natl. Acad. Sci. U. S. A., 1998, vol. 95, pp. 15458–15463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Collins, A.G. and Valentine, J.W., Defining phyla: evolutionary pathways to metazoan body plans, Evol. Dev., 2001, vol. 3, pp. 432–442.

    Article  CAS  PubMed  Google Scholar 

  32. Collins, A.G., Winkelmann, S., Hadrys, H., and Schierwater, B., Phylogeny of Capitata and Corynidae (Cnidaria, Hydrozoa) in light of mitochondrial 16S rDNA data, Zool. Scr., 2005, vol. 34, pp. 91–99.

    Article  Google Scholar 

  33. Daly, M., Brugler, M.R., Cartwright, P., et al., The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus, Zootaxa, 2007, vol. 1668, pp. 127–182.

    Google Scholar 

  34. Delage, Y. and Hérouard, E., Traité de zoologie concrete, Les Coelentérés, Paris: Reinwald, 1901, vol. 2, fasc. 2, pp. 1–848.

    Google Scholar 

  35. Duerden, J.E., The Edwardsia-stage of the actinian Lebrunia and the formation of the gastro-coelomic cavity, J. Linn. Soc. Lond., 1899, vol. 27, pp. 269–316.

    Article  Google Scholar 

  36. Duerden, J.E., The order of appearance of the mesenteries and septa in the Madreporaria, John Hopkins Univ. Circ., 1900, vol. 19, pp. 47–53.

    Google Scholar 

  37. Duerden, J.E., Report on the actinians of Porto Rico, Bull. U. S. Fish Comm., 1902, vol. 20, pp. 321–374.

    Google Scholar 

  38. Duerden, J.E., West Indian Madreporarian polyps, Mem. Natl. Acad. Sci. U. S. A., 1902, vol. 8, pt. 7, pp. 399–648.

    Google Scholar 

  39. Duerden, J.E., The morphology of the Madreporaria. V. Septal sequence, Biol. Bull., 1904, vol. 7, pp. 79–104.

    Article  Google Scholar 

  40. Duerden, J.E., The coral Siderastrea radians and its postlarval development, Carnegie Inst. Washington Publ., 1904, no. 20, pp. 1–130.

    Google Scholar 

  41. Duerden, J.E., Recent results on the morphology and development of coral polyps, Smithson. Misc. Coll., 1905, vol. 47, pp. 93–111.

    Google Scholar 

  42. Duerden, J.E., The morphology of Madreporaria. 8. The primary septa of the Rugosa, Ann. Mag. Nat. Hist., 1906, no. 105, pp. 226–242.

    Article  Google Scholar 

  43. Dunn, C.W., Hejnol, A., Matus, D.Q., et al., Broad phylogenomic sampling improves resolution of the animal tree of life, Nature, 2008, vol. 452, pp. 745–750.

    Article  CAS  PubMed  Google Scholar 

  44. Dzik, J. and Ivantsov, A.Y., An asymmetric segmented organism from the Vendian of Russia and the status of the Dipleurozoa, Hist. Biol., 1999, vol. 13, pp. 255–268.

    Article  Google Scholar 

  45. Dzik, J. and Ivantsov, A.Y., Internal anatomy of a new Precambrian dickinsoniid dipleurozoan from northern Russia, Neues Jahrb. Geol. Palaeontol., Monatsh., 2002, iss. 7, pp. 385–396.

    Google Scholar 

  46. Faurot, L., Études sur l’anatomie, l’histologie et le développement des actinides, Arch. Zool. Exp. Gén., Sér. 4, 1895, vol. 3, pp. 43–262.

    Google Scholar 

  47. Fedonkin, M.A. and Waggoner, B.M., The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism, Nature, 1997, vol. 338, 28 August, pp. 868–871.

    Article  CAS  Google Scholar 

  48. Fedorowski, J., Principles of early ontogeny in the rugose corals: a critical review, Hydrobiologia, 1991, vol. 216–217, no. 1, pp. 413–418.

    Article  Google Scholar 

  49. Finnerty, J.R., Cnidarians reveal intermediate stages in the evolution of Hox clusters and axial complexity, Am. Zool., 2001, vol. 41, pp. 608–620.

    CAS  Google Scholar 

  50. Finnerty, J.R., The origins of axial patterning in the metazoa: how old is bilateral symmetry? Int. J. Dev. Biol., 2003, vol. 47, pp. 523–529.

    PubMed  Google Scholar 

  51. Finnerty, J.R. and Martindale, M.Q., Homeoboxes in sea anemones (Cnidaria, Anthozoa): a PCR-based survey of Nematostella vectensis and Metridium senile, Biol. Bull., 1997, vol. 193, pp. 62–76.

    Article  CAS  PubMed  Google Scholar 

  52. Finnerty, J.R., Pang, K., Burton P., et al., Origins of bilateral symmetry: Hox and dpp expression in a sea anemone, Science, 2004, vol. 304, pp. 1335–1337.

    Article  CAS  PubMed  Google Scholar 

  53. Finnerty, J.R., Paulson, D., Burton, P., et al., Early evolution of a homeobox gene: the paraHox gene Gsx in the Cnidaria and the Bilateria, Evol. Dev., 2003, vol. 5, pp. 331–345.

    Article  CAS  PubMed  Google Scholar 

  54. Gemmill, J.F., The development of the sea anemone Metridium dianthus and Adamsia palliate, Philos. Trans. R. Soc., B, 1920, vol. 209, pp. 351–375.

    Article  Google Scholar 

  55. Gemmil, J.F., The development of the sea anemone Bolocera tiediae, Quart. J. Microsc. Sci., 1921, vol. 65, pp. 577–587.

    Google Scholar 

  56. Giribet, G., Dunn, C.W., Edgecombe, G.D., and Rouse, G.W., A modern look at the Animal Tree of Life, Zootaxa, 2007, no. 1668, pp. 61–79.

    Google Scholar 

  57. Greef, R., Protohydra leuckarti. Eine marine Stammform der Coelenteraten, Z. Wiss. Zool., 1869, vol. 20, pp. 37–54.

    Google Scholar 

  58. Halanych, K.M., The new view of animal phylogeny, Annu. Rev. Ecol. Evol. Syst., 2004, vol. 35, pp. 229–256.

    Article  Google Scholar 

  59. Halanych, K.M. and Passamaneck, Y., A brief review of metazoan phylogeny and future prospects in Hoxresearch, Am. Zool., 2001, vol. 41, pp. 629–639.

    CAS  Google Scholar 

  60. Hartog, J.C. and Grebelnyi, S.D., The ratio of discal and marginal tentacles as a feature for species characteristic in Corallimorphus (Anthozoa, Corallimorpharia), Proc. Zool. Inst., Russ. Acad. Sci., 2004, vol. 300, pp. 109–120.

    Google Scholar 

  61. Heider, A.R. von, Cerianthus membranaceus Haime. Ein Beitrag zur Anatomie der Actinien, Sitzungsber. Kaiser. Akad. Wiss. Wien, Math.-Naturwiss. Kl., 1879, vol. 79, pp. 21–38.

    Google Scholar 

  62. Hejnol, A., Obst, M., Stamatakis, A., et al., Assessing the root of bilaterian animals with scalable phylogenomic methods, Proc. R. Soc., Ser. B., 2009, vol. 276, pp. 4261–4270.

    Article  Google Scholar 

  63. Hertwig, O., Report on the Actiniaria dredged by H.M.S. Challenger during the years 1873–1876, Rep. Sci. Results Voyage H.M.S. Challenger, 1882, vol. 6, pp. 1–136.

    Google Scholar 

  64. Hertwig, O. and Hertwig, R., Die Actinien, anatomisch und histologisch mit besonderer Berücksichtigung des Nervenmuskelsystems untersucht, Jena. Z. Naturwiss., 1879, iss. 1, pp. 1–224.

    Google Scholar 

  65. Hill, D., British terminology for rugose corals, Geol. Mag., 1935, vol. 72, pp. 481–519.

    Article  Google Scholar 

  66. Hill, D., Rugosa, in Treatise on Invertebrate Paleontology, Part F: Coelenterata, Lawrence, KS: Geol. Soc. Am., 1956, pp. 233–324.

    Google Scholar 

  67. Hill, D., Rugosa and Tabulata, in Treatise on Invertebrate Paleontology, part F: Coelenterata, Supplement 1, Lawrence, KS: Geol. Soc. Am., 1981, pp. 1–762.

    Google Scholar 

  68. Hyman, L.H., The Invertebrates, Vol. 1: Protozoa Trough Ctenophora, New York: McGraw-Hill, 1940.

    Google Scholar 

  69. Kim, J., Kim, W., and Cunningham, C.W., A new perspective on lower metazoan relationships from 18S rDNA sequences, Mol. Biol. Evol., 1999, vol. 16, pp. 423–427.

    Article  CAS  PubMed  Google Scholar 

  70. Kramp, P.L., The hydromedusae of the Atlantic Ocean and adjacent waters, Dana Rep., 1959, no. 46, pp. 1–283.

    Google Scholar 

  71. Kramp, P.L., Synopsis of the medusae of the world, J. Mar. Biol. Assoc. U. K., 1961, vol. 40, pp. 1–469.

    Google Scholar 

  72. Kramp, P.L., The hydromedusae of the Pacific and Indian Oceans, Dana-Rep., 1965, no. 63, pp. 1–162.

    Google Scholar 

  73. Kramp, P.L., The hydromedusae of the Pacific and Indian Oceans, Sect. II and III, Dana Rep., 1968, no. 72, pp. 1–200.

    Google Scholar 

  74. Kunth, A., Beiträge zur Kenntnis fossil. Korallen. 2. Das Wachstumsgesetz der Zoantharia Rugosa und über Calceola sandalina, Z. Deutsch. Geol. Ges., 1869, vol. 21, pp. 1–284.

    Google Scholar 

  75. Kusserow, A., Pang, K., Sturm, C., et al., Unexpected complexity of the Wnt gene family in a sea anemone, Nature, 2005, vol. 433, pp.156–160.

    Article  CAS  PubMed  Google Scholar 

  76. Lee, H.E., Yoon, W.D., and Lim, D., Description of feeding apparatus and mechanism in Nemopilema nomurai Kishinouye (Scyphozoa: Rhizostomeae), Ocean Sci. J., 2008, vol. 43, pp. 61–65.

    Article  Google Scholar 

  77. Leloup, E., Cérianthaires de l’océan Atlantique, Bull. Mus. R. Hist. Nat. Belg., 1932, vol. 8, pp. 1–19.

    Google Scholar 

  78. Leloup, E., Larves de Cérianthaires appartenant a trois especes nouvelles, Bull. Mus. R. Hist. Nat. Belg., 1942, vol. 18, pp. 1–16.

    Google Scholar 

  79. Leloup, E., Coelentérés, Faune de Belgique, Bruxelles: Inst. R. Sci. Nat. Belg., 1952, pp. 1–283.

    Google Scholar 

  80. Leloup, E., Larves de Cérianthaires de Monaco et de Villefranche-sur-Mer, Bull. Inst. Océanogr., 1960, vol. 57, pp. 1–19.

    Google Scholar 

  81. Leloup, E., Larves de Cerianthaires, Discovery Rep., 1964, vol. 33, pp. 251–307.

    Google Scholar 

  82. Marlow, H.Q., Srivastava, M., Matus, D.Q., et al., Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarians, Dev. Neurobiol., 2009, vol. 69, pp. 235–254.

    Article  CAS  PubMed  Google Scholar 

  83. Martindale, M.Q., Pang, K., and Finnerty, J.R., Investigating the origins of triploblasty: “mesodermal” gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum Cnidaria, class Anthozoa), Development, 2004, vol. 131, pp. 2463–2475.

    CAS  Google Scholar 

  84. Martinez, D.E., Bridge, D., Masudanakagawa, L.M., and Cartwright, P., Cnidarian homeoboxes and the zootype, Nature, 1998, vol. 393, pp. 748–749.

    Article  CAS  PubMed  Google Scholar 

  85. Matus, D.Q., Magie, C.R., Pang, K., et al., The Hedgehog gene family of the cnidarian, Nematostella vectensis, and implications for understanding metazoan Hedgehog pathway evolution, Dev. Biol., 2008, vol. 313, pp. 501–518.

    Article  CAS  PubMed  Google Scholar 

  86. Matus, D.Q., Thomsen, G.H., and Martindale, M.Q., Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation, Curr. Biol., 2006, vol. 16, pp. 499–505.

    Article  CAS  PubMed  Google Scholar 

  87. Matus, D.Q., Pang, K., Marlow, H., et al., Molecular evidence for deep evolutionary roots of bilaterality in animal development, Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, pp. 11195–11200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Matus, D.Q., Pang, K., Daly, M., and Martindale, M.Q., Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis, Evol. Dev., 2007, vol. 9, pp. 25–38.

    Article  CAS  PubMed  Google Scholar 

  89. Matus, D.Q., Thomsen, G.H., and Martindale, M.Q., FGF signaling in gastrulation and neural development in Nematostella vectensis, an anthozoan cnidarians, Dev. Genes Evol., 2007, vol. 217, pp. 137–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. McMurrich, J.P., Contribution on the morphology of the Actinozoa. I. The structure of Cerianthus americanus, J. Morphol., 1890, vol. 4, pp. 131–150.

    Article  Google Scholar 

  91. McMurrich, J.P., Contributions on the morphology of the Actinozoa. II. On the development of the Hexactiniae, J. Morphol., 1891, vol. 4, pp. 303–330.

    Article  Google Scholar 

  92. McMurrich, J.P., The genus Arachnactis, J. Exp. Zool., 1910, vol. 9, pp. 159–168.

    Article  Google Scholar 

  93. Millard, N.A.H., Monograph on the Hydroida of southern Africa, Ann. S. Afr. Mus., 1975. vol. 68, pp. 1–513.

    Google Scholar 

  94. Milne-Edwards, H. and Haime, J., Monographie des polypiers fossiles des terrains paléozoïques, Arch. Mus. Natl. Hist. Nat., 1851, vol. 5, pp. 1–502.

    Google Scholar 

  95. Nyholm, K.G., Zur Entwicklung und Entwicklungsbiologie der Ceriantharien und Aktinien, Zool. Bidr. Uppsala, 1943, vol. 22, pp. 87–248.

    Google Scholar 

  96. Pax, F., Die Actinien, Ergeb. Fortschr. Zool., 1914, vol. 4, pp. 339–642.

    Google Scholar 

  97. Pax, F., Unterklasse: Hexacorallia, in Handbuch der Zoologie, Berlin: Walter de Gruyter, 1925, vol. 1, pp. 770–901.

    Google Scholar 

  98. Pax, F., Anthozoa, Bronn’s Klassen und Ordnungen des Theirreichs, 1940, vol. 2, pt. 2, fasc. 3, pp. 177–336.

    Google Scholar 

  99. Peterson, K.J., Cotton, J.A., Gehling, J.G., and Pisani, D., The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records, Philos. Trans. R. Soc., B, 2008, vol. 363, pp. 1435–1443.

    Article  Google Scholar 

  100. Philippe, H., Lartillot, N., and Brinkmann, H., Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia, Mol. Biol. Evol., 2005, vol. 22, pp. 1246–1253.

    Article  CAS  PubMed  Google Scholar 

  101. Ruppert, E.E., Fox, R.S., and Barnes, R.D., Invertebrate Zoology, A Functional Evolutionary Approach, Belmont, CA: Brooks/Cole–Thomson Learning, 2004.

    Google Scholar 

  102. Russell, F.S., The Medusae of the British Isles, Vol. 1: Anthomedusae, Leptomedusae, Limnomedusae, Trachymedusae, and Narcomedusae, Cambridge: Cambridge Univ. Press, 1953.

    Google Scholar 

  103. Russell, F.S., Pelagic Scyphozoa with a Supplement to the First Volume on Hydromedusae, Vol. 2: The Medusae of the British Isles, Cambridge: Cambridge Univ. Press, 1970.

    Google Scholar 

  104. Saina, M., Genichovich, E., Renfer, E., and Technau, U., BMPs and Chordin regulate patterning of the directive axis in a sea anemone, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 18592–18597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Scholz, C.B. and Technau, U., The ancestral role of Brachyury: expression of NemBra1 in the basal cnidarian Nematostella vectensis (Anthozoa), Dev. Genes Evol., 2003, vol. 212, pp. 563–570.

    CAS  PubMed  Google Scholar 

  106. Thiel, H., Cnidaria, in Introduction to the Study of Meiofauna, Washington, DC: Smithsonian Inst. Press, 1988, pp. 266–272.

    Google Scholar 

  107. Van Beneden, É., Recherches sur le développement des Arachnactis. Contribution à la morphologie de Cérianthides, Arch. Biol. (Paris), 1891, vol. 11, pp. 114–146.

    Google Scholar 

  108. Van Beneden, É., Les Anthozoaires de la Plankton-Expedition; Die Anthozoen der Plankton-Expedition, Ergebnisse der in dem Atlantischen Ocean von Mitte Juli bis Anfang November 1889 ausgeführten Plankton-Expedition der Humboldt-Stiftung, Kiel: Lipsius und Tischer, 1897.

    Google Scholar 

  109. Van Beneden, É., Travaux posthumes d’Édouard Van Beneden sur les Cérianthaires, Arch. Biol., Hors-Ser., 1923, pp. 1–242.

    Google Scholar 

  110. Werner, B., Stamm Cnidaria, in Lehrbuch der spezielle Zologie, Vol. 1: Wirbellose Tiere, 2. Cnidaria, Ctenophora, Mesozoa, Plathelminthes, Nemertini, Entoprocta, Nemathelminthes, Priapuluda, Jena: Gustav Fischer Verlag, 1984, pp. 11–305.

    Google Scholar 

  111. Willmer, P., Invertebrate Relationships: Patterns in Animal Evolution, Cambridge: Cambridge Univ. Press, 1990.

    Book  Google Scholar 

  112. Wilson, H.V., On the development of Manicina areolata, J. Morphol., 1888, vol. 2, no. 2, pp. 191–252.

    Article  Google Scholar 

  113. Zapata, F., Goetz, F.E., Smith, S.A., et al., Phylogenomic analyses support traditional relationships within Cnidaria, PLoS One, 2015, vol. 10, no. 10, p. e0139068. doi 10.1371/journal.pone.0139068

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Malakhov.

Additional information

Original Russian Text © V.V. Malakhov, 2016, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhov, V.V. Symmetry and the tentacular apparatus in Cnidaria. Russ J Mar Biol 42, 287–298 (2016). https://doi.org/10.1134/S1063074016040064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074016040064

Keywords

Navigation