Skip to main content
Log in

Application of the Cryobank Concept to Wild and Endangered Carnivora Species

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

This work reviews current advances in cryobanking gametes and preimplantation embryos for members of the order Carnivora. Problems specific to the application of current reproductive technologies to vulnerable and endangered carnivoran species are also discussed. In particular, cryopreservation of Carnivora species’ oocytes and embryos is complicated by the abundance of lipid droplets in them. The review focuses on Felidae, Canidae, Mustelidae, and Ursidae because the most experience has been gained in these families in using the achievements of reproductive biology to preserve the genetic resources of nondomesticated species, including endangered ones. For comparison, studies on domesticated members of these families are reviewed: the cat, the dog, and the domestic ferret. Specific features of reproductive biological of the four families are taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aardema, H., van Tol, H.T.A., Wubbolts, R.W., Brou-wers, J.F.H.M., Gadella, B.M., and Roelen, B.A.J., Stearoyl-CoA desaturase activity in bovine cumulus cells protects the oocyte against saturated fatty acid stress, Biol. Reprod., 2017, vol. 96, no. 5, pp. 982–992.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Agca, Y., Genome resource banking of biomedically important laboratory animals, Theriogenology, 2012, vol. 78, pp. 1653–1665.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ambarli, H., Erturk, A., and Soyumert, A., Current status, distribution, and conservation of brown bear (Ursidae) and wild canids (gray wolf, golden jackal, and red fox; Canidae) in Turkey, Turk. J. Zool., 2016, vol. 40, no. 6, pp. 944–956.

    Article  Google Scholar 

  4. Amstislavsky, S., Lindeberg, H., Aalto, J., and Kennedy, M.W., Conservation of the European mink (Mustela lutreola): focus on reproduction and reproductive technologies, Reprod. Domest. Anim., 2008, vol. 43, no. 4, pp. 502–513.

    Article  CAS  PubMed  Google Scholar 

  5. Amstislavsky, S., Lindeberg, H., and Luvoni, G., Reproductive technologies relevant to the genome resource bank in Carnivora, Reprod. Domest. Anim., 2012, vol. 47, no. 1, pp. 164–175.

    Article  CAS  PubMed  Google Scholar 

  6. Amstislavsky, S.Ya., Brusentsev, E.Yu., Okotrub, K.A., and Rozhkova, I.N., Embryo and gamete cryopreservation for genetic resources conservation of laboratory animals, Russ. J. Dev. Biol., 2015, vol. 46, no. 2, pp. 47–59.

    Article  Google Scholar 

  7. Amstislavsky, S., Brusentsev, E., Kizilova, E., et al., Sperm cryopreservation in the Far-Eastern wildcat (Prionailurus bengalensis euptilurus), Reprod. Domest. Anim., 2018, vol. 53, no. 5, pp. 1219–1226.

    Article  CAS  PubMed  Google Scholar 

  8. Amstislavsky, S., Mokrousova, V., Brusentsev, E., Okotrub, K., and Comizzoli, P., Influence of cellular lipids on cryopreservation of mammalian oocytes and preimplantation embryos: a review, Biopreserv. Biobank, 2019, vol. 17, no. 1, pp. 76–83.

    Article  CAS  PubMed  Google Scholar 

  9. Andraszek, K., Banaszewska, D., Szeleszczuk, O., Kuchta-Gładysz, M., and Grzesiakowska, A., Morphometric characteristics of the spermatozoa of blue fox (Alopex lagopus) and silver fox (Vulpes vulpes), Animals, 1927, vol. 10.

  10. Anel-Lopez, L., Ortega-Ferrusola, C., Alvarez, M., et al., Improving sperm banking efficiency in endangered species through the use of a sperm selection method in brown bear (Ursus arctos) thawed sperm, BMC Vet. Res., 2017, vol. 13, no. 1, p. 200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Apparicio, M., Ruggeri, E., and Luvoni, G.C., Vitrification of immature feline oocytes with a commercial kit for bovine embryo vitrification, Reprod. Domest. Anim., 2013, vol. 48, no. 2, pp. 240–244.

    Article  CAS  PubMed  Google Scholar 

  12. Bateman, H.L. and Swanson, W.F., Interaction of extender composition and freezing method for effective semen cryopreservation in the North American river otter (Lontra canadensis), Theriogenology, 2017, vol. 101, pp. 26–34.

    Article  CAS  PubMed  Google Scholar 

  13. Baudi, D.L.K., Jewgenow, K., Pukazhenthi, B.S., et al., Influence of cooling rate on the ability of frozen-thawed sperm to bind to heterologous zona pellucida, as assessed by competitive in vitro binding assays in the ocelot (Leopardus pardalis) and tigrina (Leopardus tigrinus), Theriogenology, 2008, vol. 69, no. 2, pp. 204–211.

    Article  CAS  PubMed  Google Scholar 

  14. Van der Berghe, F., Paris, M.C.J., Briggs, M.B., Farstad, W.K., and Paris, D.B.B.P., A two-step dilution Tris–egg yolk extender containing Equex STM significantly improves sperm cryopreservation in the African wild dog (Lycaon pictus), Cryobiology, 2018, vol. 80, pp. 18–25.

    Article  CAS  Google Scholar 

  15. Bjorndahl, L., Soderlund, I., and Kvist, U., Evaluation of the one-step eosin–nigrosin staining technique for human sperm vitality assessment, Hum. Reprod., 2003, vol. 18, no. 4, pp. 813–816.

    Article  CAS  PubMed  Google Scholar 

  16. Boutelle, S., Lenahan, K., Krisher, R., Bauman, K.L., Asa, C.S., and Silber, S., Vitrification of oocytes from endangered Mexican gray wolves (Canis lupus baileyi), Theriogenology, 2011, vol. 75, no. 4, pp. 647–654.

    Article  CAS  PubMed  Google Scholar 

  17. Brusentsev, E., Kizilova, E., Mokrousova, V., et al., Characteristics and fertility of domestic cat epididymal spermatozoa cryopreserved with two different freezing media, Theriogenology, 2018, vol. 110, pp. 148–152.

    Article  CAS  PubMed  Google Scholar 

  18. Brusentsev, E.Yu., Mokrousova, V.I., Igonina, T.N., Rozhkova, I.N., and Amstislavskii, S.Ya., Role of lipid droplets in the development of oocytes and preimplantation embryos in mammals, Russ. J. Dev. Biol., 2019, vol. 50, no. 5, pp. 230–237.

    Article  CAS  Google Scholar 

  19. Brusentsev, E.Yu., Chuiko, E.A., Okotrub, K.A., Igo-nina, T.N., Rozhkova, I.N., Ragaeva, D.S., Ranneva, S.V., Naprimerov, V.A., and Amstislavskyii, S.Ya., Effect of high-fat diet on the lipid profile of mouse oocytes, Vavilov. Zh. Genet. Selekts., 2020, vol. 24, no. 5, pp. 533–538.

    Google Scholar 

  20. Buranaamnuay, K., Protocols for sperm cryopreservation in the domestic cat: a review, Anim. Reprod. Sci., 2017, vol. 183, pp. 56–65.

    Article  CAS  PubMed  Google Scholar 

  21. Cai, Z.G., An, J.H., Liu, Y.L. et al., Single layer centrifugation improves the quality of frozen-thawed sperm of giant panda (Ailuropoda melanoleuca), Anim. Reprod. Sci., 2018, vol. 195, pp. 58–64.

    Article  CAS  PubMed  Google Scholar 

  22. Cao, X., Li, J., Xue, H., et al., Effect of vitrification on meiotic maturation, mitochondrial distribution and glutathione synthesis in immature silver fox cumulus oocyte complexes, Theriogenology, 2017, vol. 91, pp. 104–111.

    Article  CAS  PubMed  Google Scholar 

  23. Chastant-Maillard, S., Viaris de Lesegno, C., Chebrout, M., et al., The canine oocyte: uncommon features of in vivo and in vitro maturation, Reprod. Fertil. Dev., 2011, vol. 23, no. 3, pp. 391–402.

    Article  CAS  PubMed  Google Scholar 

  24. Chatdarong, K., Retained fertilizing capability in cryopreserved feline spermatozoa, Reprod. Domest. Anim., 2017, vol. 52, pp. 261–264.

    Article  CAS  PubMed  Google Scholar 

  25. Cheuqueman, C., Faundez, R., Sanchez, R., and Risopatron, J., Changes in sperm function and structure after freezing in domestic cat spermatozoa, Andrologia, 2018, vol. 50, no. 9. e13080.

    Article  PubMed  CAS  Google Scholar 

  26. Cocchia, N., Ciani, F., El-Rass, R., et al., Cryopreservation of feline epididymal spermatozoa from dead and alive animals and its use in assisted reproduction, Zygote, 2009, vol. 18, pp. 1–8.

    Article  PubMed  CAS  Google Scholar 

  27. Comizzoli, P. and Holt, W.V., Recent advances and prospects in germplasm preservation of rare and endangered species, in Reproductive Sciences in Animal Conservation, Advances in Experimental Medicine and Biology, Holt, W.V., et al., Eds., New York: Springer Science, 2014, vol. 753, pp. 331–356.

  28. Comizzoli, P. and Holt, W.V., Breakthroughs and new horizons in reproductive biology of rare and endangered animal species, Biol. Reprod., 2019, vol. 101, no. 3, pp. 514–525.

    Article  PubMed  Google Scholar 

  29. Conforti, V., Adania, C.H., Gonzalez, P.G., et al., Novel recipient synchronization regimens for successful embryo transfer in the Brazilian ocelot following long-term frozen embryo storage, Reprod. Fertil. Dev., 2008, vol. 21, no. 1.

  30. Crichton, E.G., Bedows, E., Miller-Lindholm, A.K., et al., The efficacy of porcine gonadotropins for repeated stimulation of ovarian activity for oocyte retrieval and in vitro embryo production and cryopreservation in Siberian tigers (Panthera tigris altaica), Biol. Reprod., 2003, vol. 68, pp. 105–113.

    Article  CAS  PubMed  Google Scholar 

  31. Damiani, P., Gomez, M.C., Cole, A., et al., The production of intracytoplasmic sperm injection lion (Pantera leo) embryos using spermatozoa collected by percutaneous epididymal sperm aspiration from vasectomized males, Reprod. Fertil. Dev., 2003, vol. 16, no. 2, pp. 223–224.

    Article  Google Scholar 

  32. Donoghue, A.M., Johnston, L.A., Seal, U.S., et al., Ability of thawed tiger (Panthera tigris) spermatozoa to fertilize conspecific eggs and bind and penetrate domestic cat eggs in vitro, Reproduction, 1992, vol. 96, no. 2, pp. 555–564.

    Article  CAS  Google Scholar 

  33. Dresser, B.L., Gelwicks, E.J., Wachs, K.B., and Keller, G.L., First successful transfer of cryopreserved feline (Felis catus) embryos resulting in live offspring, J. Exp. Zool., 1988, vol. 246, no. 2, pp. 180–186.

    Article  CAS  PubMed  Google Scholar 

  34. Elliott, G.D., Wang, S., and Fuller, B.J., Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures, Cryobiology, 2017, vol. 76, pp. 74–91.

    Article  CAS  PubMed  Google Scholar 

  35. Erdmann, R.H., Blank, M.H., Ribeiro, R.N., et al., Cryopreservation of margay (Leopardus wiedii) spermatozoa: effects of different extenders and frozen protocols, Theriogenology, 2019, vol. 143, pp. 27–34.

    Article  PubMed  CAS  Google Scholar 

  36. Fernandez-Gonzalez, L., Hribal, R., Stagegaard, J., Zahmel, J., and Jewgenow, K., Production of lion (Panthera leo) blastocysts after in vitro maturation of oocytes and ICSI, Theriogenology, 2015, vol. 83, no. 6, pp. 995–999.

    Article  PubMed  Google Scholar 

  37. Franklin, A.D., Waddell, W.T., and Goodrowe, K.L., Red wolf (Canis rufus) sperm quality and quantity is affected by semen collection method, extender components, and post-thaw holding temperature, Theriogenology, 2018, vol. 116, pp. 41–48.

    Article  CAS  PubMed  Google Scholar 

  38. Galiguis, J., Gomez, M.C., Leibo, S.P., and Pope, C.E., Birth of a domestic cat kitten produced by vitrification of lipid polarized in vitro matured oocytes, Cryobiology, 2014, vol. 68, no. 3, pp. 459–466.

    Article  CAS  PubMed  Google Scholar 

  39. Ganan, N., Gonzalez, R., Garde, J.J., et al., Assessment of semen quality, sperm cryopreservation and heterologous IVF in the critically endangered Iberian lynx (Lynx pardinus), Reprod. Fertil. Dev., 2009a, vol. 21, no. 7, pp. 848–859.

    Article  PubMed  Google Scholar 

  40. Ganan, N., Gonzalez, R., Sestelo, A., et al., Male reproductive traits, semen cryopreservation, and heterologous in vitro fertilization in the bobcat (Lynx rufus), Theriogenology, 2009b, vol. 72, no. 3, pp. 341–352.

    Article  CAS  PubMed  Google Scholar 

  41. Gomez, M.C., Pope, E., Harris, R., Mikota, S., and Dresser, B.L., Development of in vitro matured, in vitro fertilized domestic cat embryos following cryopreservation, culture and transfer, Theriogenology, 2003, vol. 60, no. 2, pp. 239–251.

    Article  PubMed  Google Scholar 

  42. Guaitolini, C.R., Taffarel, M.O., Teixeira, N.S., Sudano, M.J., Freitas, P.M., Lopes, M.D., Landin-Alvarenga, FdaC., de Oliveira, C.A., and Luz, M.R., Post-thaw viability of in vivo-produced canine blastocysts cryopreserved by slow freezing, Theriogenology, 2012, vol. 78, no. 3, pp. 576–582.

    Article  PubMed  Google Scholar 

  43. Gundu, E.G. and Adia, J.E., Conservation methods of endangered species, J. Res. Fores. Wildl. Environ., 2014, vol. 6, no. 2, pp. 76–83.

    Google Scholar 

  44. Guraya, S.S., A histochemical analysis of lipid yolk deposition in the oocytes of cat and dog, J. Exp. Zool., 1965, vol. 160, no. 1, pp. 123–135.

    Article  CAS  PubMed  Google Scholar 

  45. Ha, A.N., Jo, A.R., Kim, Y.G., et al., Establishment of cryopreservation of leopard cat semen collected by electro-ejaculation method, J. Embryol. Trans., 2011, vol. 26, no. 4, pp. 245–250.

    Google Scholar 

  46. Hori, T., Ushijima, H., Kimura, T., et al., Intrauterine embryo transfer with canine embryos cryopreserved by the slow freezing and the Cryotop method, J. Vet. Med. Sci., 2016, vol. 78, no. 7, pp. 1137–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Van der Horst, G., Kitchin, R.M., van der Horst, M., and Atherton, R.W., The effect of the breeding season, cryopreservation and physiological extender on selected sperm and semen parameters of four ferret species: implications for captive breeding in the endangered black-footed ferret, Reprod. Fertil. Dev., 2009, vol. 21, no. 2, pp. 351–363.

    Article  CAS  PubMed  Google Scholar 

  48. Howard, J.G. and Wildt, D.E., Approaches and efficacy of artificial insemination in felids and mustelids, Theriogenology, 2009, vol. 71, pp. 130–148.

    Article  CAS  PubMed  Google Scholar 

  49. Howard, J.G., Lynch, C., Santymire, R., Marinari, P., and Wildt, D.E., Recovery of gene diversity using long-term, cryopreserved spermatozoa in the endangered black-footed ferret, Anim. Conserv., 2015, vol. 19, pp. 102–111.

    Article  Google Scholar 

  50. https://www.canids.org/5.

  51. https://www.iucn.org.

  52. https://www.iucnredlist.org/search?taxonomies=100041& searchType=species.

  53. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi.

  54. Hwang, I.S. and Hochi, S., Recent progress in cryopreservation of bovine oocytes, Biomed. Res. Int., 2014, vol. 2014, p. 570647.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ishigaki, M., Kawasaki, S., Ishikawa, D., and Ozaki, Y., Near-infrared spectroscopy and imaging studies of fertilized fish eggs: in vivo monitoring of egg growth at the molecular level, Sci. Rep., 2016, vol. 6, p. 20066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jalkanen, L., Sperm abnormalities in silver fox (Vulpes vulpes) semen selected for artificial insemination, J. Reprod. Fertil., 1993, pp. 287–290.

  57. Jara, B., Merino, O., Sanchez, R., and Risopatron, J., Positive effect of butylated hydroxytoluene (BHT) on the quality of cryopreserved cat spermatozoa, Cryobiology, 2019, vol. 89, pp. 76–81.

    Article  CAS  PubMed  Google Scholar 

  58. Jayaprakash, D., Patil, S.B., Kumar, M.N., Majumdar, K.C., and Shivaji, S., Semen characteristics of the captive Indian leopard, Panthera pardus, J. Androl., 2001, vol. 22, no. 1, pp. 25–33.

    CAS  PubMed  Google Scholar 

  59. Jeong, D.H., Kim, J.H., and Na, K.J., Characterization and cryopreservation of Amur leopard cats (Prionailurus bengalensis euptilurus) semen collected by urethral catheterization, Theriogenology, 2018, vol. 119, pp. 91–95.

    Article  PubMed  Google Scholar 

  60. Johnson, A.E., Freeman, E.W., Wildt, D.E., and Songsasen, N., Spermatozoa from the maned wolf (Chrysocyon brachyurus) display typical canid hypersensitivity to osmotic and freezing-induced injury, but respond favorably to dimethyl sulfoxide, Cryobiology, 2014, vol. 68, no. 3, pp. 361–370.

    Article  CAS  PubMed  Google Scholar 

  61. Johnston, L.A., Donoghue, A.M., Igo, W., Simmons, L.G., Wildt, D.E., and Rieffenberger, J., Oocyte recovery and maturation in the American black bear (Ursus americanus): a model for endangered ursids, J. Exp. Zool., 1994, vol. 269, pp. 53–61.

    Article  CAS  PubMed  Google Scholar 

  62. Karja, N.W.K., Fahrudin, M., Agus Setiadi, M., et al., Characteristics and fertility of Sumatran tiger spermatozoa cryopreserved with different sugars, Cryoletters, 2016, vol. 37, no. 4, pp. 264–271.

    Google Scholar 

  63. Karpegina, Y.A., Okotrub, K.A., Brusentsev, E.Y., Amstislavsky, S.Y., and Surovtsev, N.V., Cryoprotectant redistribution along the frozen straw probed by Raman spectroscopy, Cryobiology, 2016, vol. 72, no. 2, pp. 148–153.

    Article  CAS  PubMed  Google Scholar 

  64. Kheirkhah, M.S., Mollapour, Sisakht, M., Mohammadsadegh, M., and Moslemi, H.R., Sperm evaluation of Jungle Cat (Felis chaus) obtained by urethral catheterization (CT) after medetomidine administration, Theriogenology, 2017, vol. 91, pp. 17–20.

    Article  CAS  PubMed  Google Scholar 

  65. Kim, S., Oocyte biology in fertility preservation. Vitrification of oocytes: from basic science to clinical application, Adv. Exp. Med. Biol., 2013, vol. 761, Ch. 6, рр. 69–83.

  66. Kochan, J., Nizanski, W., Moreira, N., et al., ARTs in Wild Felid Conservation Programmes in Poland and in the World, J. Vet. Res., 2019, vol. 63, no. 3, pp. 457–464.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Komatsu, K., Iwasaki, T., Murata, K., et al., Morphological reproductive characteristics of testes and fertilization capacity of cryopreserved sperm after the Fukushima accident in raccoon (Procyon lotor), Reprod. Domest. Anim., 2021, vol. 56, no. 3, pp. 484–497.

    Article  CAS  PubMed  Google Scholar 

  68. Kuleshova, L.G., Gopdienko, E.A., and Kovalenko, I.F., Permeability of isolated rat hepatocyte plasma membranes for molecules of dimethyl sulfoxide, Biophysics (Moscow), 2014, vol. 59, no. 3, pp. 387–392.

    Article  CAS  Google Scholar 

  69. Lamberski, N., Felidae, Fowler’s Zoo Wild Anim. Med., 2015, vol. 8, pp. 467–476.

    Article  Google Scholar 

  70. Larson, J.L. and Miller, D.J., Simple histochemical stain for acrosomes on sperm from several species, Mol. Reprod. Dev., 1999, vol. 52, no. 4, pp. 445–449.

    Article  CAS  PubMed  Google Scholar 

  71. Leibo, S.P. and Songsassen, N., Cryopreservation of gametes and embryos of nondomestic species, Theriogenology, 2002, vol. 57, pp. 303–326.

    Article  CAS  PubMed  Google Scholar 

  72. Lindeberg, H., Aalto, J., Amstislavsky, S., et al., Surgical recovery and successful surgical transfer of conventionally frozen-thawed embryos in the farmed European polecat (Mustela putorius), Theriogenology, 2003, vol. 60, no. 8, pp. 1515–1525.

    Article  PubMed  Google Scholar 

  73. Luciano, A.M., Chigioni, S., Lodde, V., Franciosi, F., Luvoni, G.C., and Modina, S.C., Effect of different cryopreservation protocols on cytoskeleton and gap junction mediated communication integrity in feline germinal vesicle stage oocytes, Cryobiology, 2009, vol. 59, no. 1, pp. 90–95.

    Article  PubMed  Google Scholar 

  74. Lueders, I., Luther, I., Scheepers, G., and van der Horst, G., Improved semen collection method for wild felids: urethral catheterization yields high sperm quality in African lions (Panthera leo), Theriogenology, 2012, vol. 78, no. 3, pp. 696–701.

    Article  CAS  PubMed  Google Scholar 

  75. Lueders, I., Ludwig, C., Schroeder, M., Mueller, K., Zahmel, J., and Dehnhard, M., Successful nonsurgical artificial insemination and hormonal monitoring in an Asiatic golden cat (Catopuma temmincki), J. Zoo. Wildl. Med., 2014, vol. 45, no. 2, pp. 372–379.

    Article  PubMed  Google Scholar 

  76. Luther, I., Jakop, U., Lueders, I., et al., Semen cryopreservation and radical reduction capacity of seminal fluid in captive African lion (Panthera leo), Theriogenology, 2017, vol. 89, pp. 295–304.

    Article  CAS  PubMed  Google Scholar 

  77. Luvoni, G.C., Gamete cryopreservation in the domestic cat, Theriogenology, 2006, vol. 66, no. 1, pp. 101–111.

    Article  CAS  PubMed  Google Scholar 

  78. Luvoni, G.C. and Pellizzari, P., Embryo development in vitro of cat oocytes cryopreserved at different maturation stages, Theriogenology, 2000, vol. 53, no. 8, pp. 1529–1540.

    Article  CAS  PubMed  Google Scholar 

  79. Macente, B.I., Gutierrez, R.R., Apparicio, M., et al., Cat epididymal semen cryopreserved with and without vitamin E: effect on sperm parameters and lipid peroxidation, Anim. Reprod., 2018, vol. 15, no. 4, pp. 1193–1198.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mastromonaco, G.F. and Songsasen, N., Reproductive technologies for the conservation of wildlife and endangered species, in Reproductive Technologies in Animals, 2020, pp. 99–117.

  81. Mazur, P., Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos, Cell Biophys., 1990, vol. 17, no. 1, pp. 53–92.

    Article  CAS  PubMed  Google Scholar 

  82. Mikolajewska, N., Muller, K., Nizanski, W., and Jewgenow, K., Vitrification of domestic cat oocytes-effect on viability and integrity of subcellular structures, Reprod. Domest. Anim., 2012, vol. 47, pp. 295–299.

    Article  PubMed  Google Scholar 

  83. Minter, L.J. and DeLiberto, T.J., Influence of extender, freezing rate, and thawing rate on post-thaw motility, viability and morphology of coyote (Canis latrans) spermatozoa, Theriogenology, 2005, vol. 64, no. 9, pp. 1898–1912.

    Article  PubMed  Google Scholar 

  84. Mokrousova, V.I., Okotrub, K.A., Brusentsev, E.Yu., et al., Effects of slow freezing and vitrification on viability in domestic cat embryos, Reprod. Domest. Anim., 2020a, vol. 55, pp. 1328–1336.

    Article  CAS  PubMed  Google Scholar 

  85. Mokrousova, V.I., Okotrub, K.A., Amstislavsky, S.Y., and Surovtsev, N.V., Raman spectroscopy evidence of lipid separation in domestic cat oocytes during freezing, Cryobiology, 2020b, vol. 95, pp. 177–182.

    Article  CAS  PubMed  Google Scholar 

  86. Moro, L.N., Sestelo, A.J., and Salamone, D.F., Evaluation of cheetah and leopard spermatozoa developmental capability after interspecific ICSI with domestic cat oocytes, Reprod. Domest. Anim., 2014, vol. 49, no. 4, pp. 693–700.

    Article  CAS  PubMed  Google Scholar 

  87. Nagashima, J.B., Sylvester, S.R., Nelson, J.L., et al., Live births from domestic dog (Canis familiaris) embryos produced by in vitro fertilization, PLoS One, 2015, vol. 10, no. 12. e0143930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Nowak, A., Kochan, J., Prochowska, S., Partyka, A., Młodawska, W., Witarski, W., Skotnicki, J., Grega, T., Palys, M., and Nizanski, W., The viability of serval (Leptailurus serval) and Pallas cat (Felis manul) oocytes after cryopreservation using the Rapid-I method, Cryo Lett., 2019, vol. 40, no. 4, pp. 226–230.

    Google Scholar 

  89. Nunez-Martinez, I., Moran, J.M., and Pena, F.J., A three-step statistical procedure to identify sperm kinematic subpopulations in canine ejaculates: changes after cryopreservation, Reprod. Domest. Anim., 2006, vol. 41, no. 5, pp. 408–415.

    Article  CAS  PubMed  Google Scholar 

  90. Ochota, M. and Nizanski, W., Effect of vitrification on apoptotic changes in feline embryos, Czech J. Anim. Sci., 2018, vol. 63, pp. 144–151.

    Article  CAS  Google Scholar 

  91. Okano, T., Murase, T., Yayota, C., et al., Characteristics of captive Japanese black bears (Ursus thibetanus japonicus) semen collected by electroejaculation with different voltages for stimulation and frozen-thawed under different conditions, Anim. Reprod. Sci., 2006, vol. 95, nos. 1–2, pp. 134–143.

    Article  CAS  PubMed  Google Scholar 

  92. Okotrub, K.A., Mokrousova, V.I., Amstislavsky, S.Y., and Surovtsev, N.V., Lipid droplet phase transition in freezing cat embryos and oocytes probed by Raman spectroscopy, Biophys. J., 2018, vol. 115, no. 3, pp. 577–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pederson, M.J., Watson, C.A., Blevins, B.A., and Loskutoff, N.M., Domestic cat (Felis catus) embryo cryopreservation: slow-slowing versus vitrification, Reprod. Fertil. Dev., 2009, vol. 21, p. 180.

    Article  Google Scholar 

  94. Piltti, K., Lindeberg, H., Aalto, J., and Korhonen, H., Live cubs born after transfer of OPS vitrified-warmed embryos in the farmed European polecat (Mustela putorius), Theriogenology, 2004, vol. 61, no. 5, pp. 811–820.

    Article  CAS  PubMed  Google Scholar 

  95. Polge, C., Smith, A.U., and Parkes, A.S., Revival of spermatozoa after vitrification and dehydration at low temperatures, Nature, 1949, vol. 164, p. 666.

    Article  CAS  PubMed  Google Scholar 

  96. Pope, C.E., Embryo technology in conservation efforts for endangered felids, Theriogenology, 2000, vol. 53, pp. 163–174.

    Article  CAS  PubMed  Google Scholar 

  97. Pope, C.E., Aspects of in vivo oocyte production, blastocyst development, and embryo transfer in the cat, Theriogenology, 2014, vol. 81, pp. 126–137.

    Article  CAS  PubMed  Google Scholar 

  98. Pope, C.E., Gomez, M.C., and Dresser, B.L., In vitro embryo production and embryo transfer in domestic and non-domestic cats, Theriogenology, 2006, vol. 66, nos. 6–7, pp. 1518–1524.

    Article  CAS  PubMed  Google Scholar 

  99. Pope, C.E., Crichton, E.G., Gomez, M.C., Dumas, C., and Dresser, B.L., Domestic cat kittens born after transfer of cryopreserved embryos produced by in vitro fertilization of oocytes with flow sorted sperm, Reprod. Fertil. Dev., 2011, vol. 23, p. 148.

    Article  Google Scholar 

  100. Pope, C.E., Gomez, M.C., Galiguis, J., and Dresser, B.L., Applying embryo cryopreservation technologies to the production of domestic and black-footed cats, Reprod. Domest. Anim., 2012, vol. 47, pp. 125–129.

    Article  PubMed  Google Scholar 

  101. Pukazhenthi, B.S., Neubauer, K., Jewgenow, K., Howard, J.G., and Wildt, D.E., The impact and potential etiology of teratospermia in the domestic cat and its wild relatives, Theriogenology, 2006, vol. 66, pp. 112–121.

    Article  PubMed  Google Scholar 

  102. Qamar, A.Y., Fang, X., Kim, M.J., and Cho, J., Myoinositol supplementation of freezing medium improves the quality-related parameters of dog sperm, Animals (Basel), 2019, vol. 9, no. 12. pii: E1038.

    Article  Google Scholar 

  103. Rajan, R. and Matsumura, K., Development and application of cryoprotectants, Adv. Exp. Med. Biol., 2018, vol. 1081, pp. 339–354.

    Article  CAS  PubMed  Google Scholar 

  104. Rall, W.F. and Fahy, G.M., Ice-free cryopreservation of mouse embryos at –196 degrees C by vitrification, Nature, 1985, vol. 313, no. 6003, pp. 573–575.

    Article  CAS  PubMed  Google Scholar 

  105. Ramu, S. and Jeyendran, R.S., The hypoosmotic swelling test for evaluation of sperm membrane integrity, in Spermatogenesis, Totowa, NJ: Humana Press, 2013, pp. 21–25.

    Google Scholar 

  106. Ranneva, S.V., Okotrub, K.A., Amstislavsky, S.Y., and Surovtsev, N.V., Deuterated stearic acid uptake and accumulation in lipid droplets of cat oocytes, Arch. Biochem. Biophys., 2020, vol. 692, p. 108532.

    Article  CAS  PubMed  Google Scholar 

  107. Regehr, E.V., Laidre, K.L., Akçakaya, H.R., Amstrup, S.C., Atwood, T.C., Lunn, N.J., Obbard, M., Stern, H., Thiemann, G.W., and Wiig, O., Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines, Biol. Lett., 2016, vol. 12, no. 12, p. 20160556.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rodrigues da Paz, R.S. and dos Santos Avila, H.B., Coatis (Nasua nasua) semen cryopreservation, Braz. J. Vet. Res. Anim. Sci., 2015, vol. 52, no. 2, pp. 151–157.

  109. Saragusty, J. and Arav, A., Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification, Reproduction, 2011, vol. 141, no. 1, pp. 1–19.

    Article  CAS  PubMed  Google Scholar 

  110. Sestelo, A.J., Rodriguez, M.D., Ganan, N., et al., Functionality evaluation of two extenders for Leopardus geoffroyi sperm cryopreservation by interspecific IVF with domestic cat oocytes, Reprod. Fertil. Dev., 2018, vol. 31, no. 1, pp. 178–179.

    Article  Google Scholar 

  111. Shaw, J.M. and Jones, G.M., Terminology associated with vitrification and other cryopreservation procedures for oocytes and embryos, Hum. Reprod. Update, 2003, vol. 9, no. 6, pp. 583–605.

    Article  CAS  PubMed  Google Scholar 

  112. Sichtar, J., Simonik, O., Folkova, P., et al., The quality of frozen-thawed canine semen with respect to semen extender composition and sequence of ejaculate collection in dogs, Act. Univ. Agricult. Silvicult. Mend. Brun., 2015, vol. 64, pp. 169–175.

    Article  CAS  Google Scholar 

  113. Silva, H.V.R., Nunes, T.G.P., Brito, B.F., et al., Influence of different extenders on morphological and functional parameters of frozen-thawed spermatozoa of jaguar (Panthera onca), Cryobiology, 2019, pii: S0011-2240(19)30195-6.

  114. Stasiak, K., Glogowski, J., Demianowicz, W., et al., Use of biochemical markers to evaluate the quality of fresh and cryopreserved semen from the arctic fox (Vulpes lagopus), Pol. J. Vet. Sci., 2014, vol. 17, no. 3, pp. 427–432.

    Article  CAS  PubMed  Google Scholar 

  115. Stoops, M.A., Bond, J.B., Bateman, H.L., et al., Comparison of different sperm cryopreservation procedures on post-thaw quality and heterologous in vitro fertilisation success in the ocelot (Leopardus pardalis), Reprod. Fertil. Dev., 2007, vol. 19, no. 5, pp. 685–694.

    Article  CAS  PubMed  Google Scholar 

  116. Sun, X., Li, Z., Yi, Y., et al., Efficient term development of vitrified ferret embryos using a novel pipette chamber technique, Biol. Reprod., 2008, vol. 79, no. 5, pp. 832–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Swanson, W.F., Research in nondomestic species: experiences in reproductive physiology research for conservation of endangered felids, ILAR J., 2003, vol. 44, pp. 307–316.

    Article  CAS  PubMed  Google Scholar 

  118. Swanson, W.F., Stoops, M.A., Magarey, G.M., and Herrick, J.R., Sperm cryopreservation in endangered felids: developing linkage of in situ-ex situ populations, Soc. Reprod. Fertil. Suppl., 2007, vol. 65, pp. 417–423.

    CAS  PubMed  Google Scholar 

  119. Terrell, K.A., Wildt, D.E., Anthony, N.M., et al., Different patterns of metabolic cryo-damage in domestic cat (Felis catus) and cheetah (Acinonyx jubatus) spermatozoa, Cryobiology, 2012, vol. 64, no. 2, pp. 110–117.

    Article  CAS  PubMed  Google Scholar 

  120. Thuwanut, P., Chatdarong, K., Bergqvist, A.S., et al., The effects of antioxidants on semen traits and in vitro fertilizing ability of sperm from the flat-headed cat (Prionailurus planiceps), Theriogenology, 2011, vol. 76, no. 1, pp. 115–125.

    Article  CAS  PubMed  Google Scholar 

  121. Thuwanut, P., Tipkantha, W., Siriaroonrat, B., Comizzoli, P., and Chatdarong, K., Beneficial effect of extracellular adenosine 5'-triphosphate treatment on the Indochinese leopard (Panthera pardus delacouri) sperm quality after cryopreservation, Reprod. Domest. Anim., 2017, vol. 52, pp. 269–274.

    Article  CAS  PubMed  Google Scholar 

  122. Tipkantha, W., Thuwanut, P., Morrell, J., Comizzoli, P., and Chatdarong, K., Influence of living status (single vs. paired) and centrifugation with colloids on the sperm morphology and functionality in the clouded leopard (Neofelis nebulosa), Theriogenology, 2016, vol. 86, no. 9, pp. 2202–2209.

    Article  CAS  PubMed  Google Scholar 

  123. Tsujioka, T., Otzdorff, C., Braun, J., and Hochi, S., Effect of post-IVF developmental kinetics on in vitro survival of vitrified-warmed domestic cat blastocysts, Reprod. Domest. Anim., 2008, vol. 43, no. 3, pp. 323–327.

    Article  CAS  PubMed  Google Scholar 

  124. Turathum, B., Saikhun, K., Sangsuwan, P., and Kitiyanant, Y., Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes, Reprod. Biol. Endocrinol., 2010, vol. 8, p. 70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Turathum, B., Roytrakul, S., Changsangfa, C., et al., Missing and overexpressing proteins in domestic cat oocytes following vitrification and in vitro maturation as revealed by proteomic analysis, Biol. Res., 2018, vol. 51, no. 1, p. 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Vajta, G., Rienzi, L., and Ubaldi, F.M., Open versus closed systems for vitrification of human oocytes and embryos, Reprod. Biomed. Online, 2015, vol. 30, no. 4, pp. 325–333.

    Article  PubMed  Google Scholar 

  127. Vansandt, L.M., Bateman, H.L., Newsom, J., and Swanson, W.F., Getting the yolk out: the use of a soy lecithin-based cryomedium for semen banking in the Pallas’ cat and fishing cat, Reprod. Fertil. Dev., 2016, vol. 29, no. 1, pp. 165–166.

    Article  Google Scholar 

  128. Vansandt, L.M., Moresco, A., Gonzalez, R., et al., Sperm cryopreservation with a soy lecithin-based medium in black-footed cats (Felis nigripes) and sand cats (Felis margarita), Reprod. Fertil. Dev., 2018, vol. 31, p. 177.

    Article  Google Scholar 

  129. Veprintsev, B.N. and Rott, N.N., Conserving genetic resources, Nature, 1979, vol. 280, pp. 633–634.

    Article  Google Scholar 

  130. Whittingham, D.G., Leibo, S.P., and Mazur, P., Survival of mouse embryos frozen to –196 degrees and –269 degrees C, Science, 1972, vol. 178, no. 4059, pp. 411–414.

    Article  CAS  PubMed  Google Scholar 

  131. Wildt, D.E. and Roth, T.L., Assisted reproduction for managing and conserving threatened felids, Int. Zoo Yb., 1997, vol. 35, pp. 164–172.

    Article  Google Scholar 

  132. Wildt, D., Monfort, S., Donoghue, A., Johnston, L., and Howard, J., Embryogenesis in conservation biology— or, how to make an endangered species embryo, Theriogenology, 1992, vol. 37, pp. 161–184.

    Article  Google Scholar 

  133. Wood, T.C. and Wildt, D.E., Effect of the quality of the cumulus-oocyte complex in the domestic cat on the ability of oocytes to mature, fertilize and develop into blastocysts in vitro, J. Reprod. Fertil., 1997, vol. 110, no. 2, pp. 355–360.

    Article  CAS  PubMed  Google Scholar 

  134. Yatu, M., Sato, M., Kobayashi, J., et al., Collection and frozen storage of semen for artificial insemination in red foxes (Vulpes vulpes), J. Vet. Med. Sci., 2018, vol. 80, no. 11, pp. 1762–1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yin, X.J., Lee, H.S., Choi, E.G., Yu, X.F., Park, G.Y., Bae, I., Yang, C.J., Oh, D.H., Kim, N.H., and Kong, I.K., In vitro maturation of oocytes derived from the brown bear (Ursus arctos), J. Reprod. Dev., 2007, vol. 53, no. 3, pp. 685–690.

    Article  CAS  PubMed  Google Scholar 

  136. Zambelli, D. and Cunto, M., Semen collection in cats: techniques and analysis, Theriogenology, 2006, vol. 66, no. 2, pp. 159–165.

    Article  PubMed  Google Scholar 

  137. Zindl, C., Asa, C.S., and Gunzel-Apel, A.R., Influence of cooling rates and addition of Equex pasta on cooled and frozen-thawed semen of generic gray (Canis lupus) and Mexican gray wolves (C. l. baileyi), Theriogenology, 2006, vol. 66, nos. 6–7, pp. 1797–1802.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Laboratory of Animals Genetic Resources Shared Use Center and the Biological Objects Microscopy Shared Use Center of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-34-90093) and the budget project of the Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences (project no. AAAA-A19-119100290012-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Amstislavsky.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interests. This article does not contain any studies involving animals or human participants performed by any of the authors.

AUTHOR’S CONTRIBUTIONS

V.I. Mokrousova, E.Yu. Brusentsev, and S.Ya. Amsti-slavsky wrote the section “Cryopreservation of Spermatozoa of Representatives of the Order of Carnivores” and prepared the tables; S.V. Okotrub and V.A. Naprimerov wrote the section “Cryopreservation of Oocytes and Preimplantation Embryos of Representatives of the Order of Carnivores”; S.Ya. Amstislavsky edited the manuscript.

Additional information

Translated by M. Belenkii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amstislavsky, S.Y., Mokrousova, V.I., Okotrub, S.V. et al. Application of the Cryobank Concept to Wild and Endangered Carnivora Species. Russ J Dev Biol 52, 301–318 (2021). https://doi.org/10.1134/S1062360421040020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360421040020

Keywords:

Navigation