Skip to main content
Log in

Embryo and gamete cryopreservation for genetic resources conservation of laboratory animals

  • Reviews
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

The article reviews the use of embryo and gamete cryopreservation for cryobanking the laboratory animal species. Special emphasis is given to the mechanisms of cryoinjury and cryoprotection during program freezing and vitrification. The species specific cryobanking problems are discussed and the prospects to overcome these problems are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, A., Geneticists prepare for deluge of mutant mice, Nature, 2004, vol. 432, p. 541.

    CAS  PubMed  Google Scholar 

  • Adams, D.J. and van der Weyden, L., Contemporary approaches for modifying the mouse genome, Physiol. Genomics, 2008, vol. 34, pp. 225–238.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Agca, Y., Genome resource banking of biomedically important laboratory animals, Theriogenology, 2012, vol. 78, pp. 1653–1665.

    PubMed Central  PubMed  Google Scholar 

  • Amstislavsky, S.Ya. and Trukshin, I.S., Cryobanking mammalian embryos: priorities and the optimal choice of hreproductive technologies, Russ. J. Dev. Biol., 2010, vol. 41, no. 1, pp. 13–23.

    Google Scholar 

  • Amstislavsky, S., Amstislavskaya, T., Stein, M., et al., Embryo cryobanking for conserving laboratory and wild animal species, Scand. J. Lab. Anim. Sci., 1996, vol. 23, pp. 269–277.

    Google Scholar 

  • Amstislavsky, S., Lindeberg, H., Jarvinen, M., et al., Ex-situ preservation of mustelidae: primer of application of genetic resource bank concept with the use of polecats as the model species, Scientifur, 2000, vol. 24, pp. 45–58.

    Google Scholar 

  • Amstislavsky, S., Lindeberg, H., Aalto, J., and Kennedy, M., Conservation of the European mink (Mustela lutreola): focus on reproduction and reproductive technologies, Reprod. Dom. Anim., 2008, vol. 43, pp. 502–513.

    CAS  Google Scholar 

  • Amstislavsky, S., Lindeberg, H., and Luvoni, G.C., Reproductive technologies relevant to the genome resource bank in Carnivora, Reprod. Dom. Anim., 2012, vol. 47, pp. 164–175.

    CAS  Google Scholar 

  • Amstislavsky, S.Ya., Igonina, T.N., Rozhkova, I.N., et al., Rederivation by embryo transfer in strains of laboratory mice and rats, Russ. J. Genet.: Appl. Res., 2013, vol. 3, no. 4, pp. 305–315.

    Google Scholar 

  • Amstislavsky, S.Ya., Abramova, T.O., Brusentsev, E.Yu., and Kizilova, E.A., Cryopreservation and biodiversity conservation, Priroda (Moscow, Russ. Fed.), 2014 no. 5, pp. 24–33.

    Google Scholar 

  • Andrabi, S.M. and Maxwell, W.M., A review on reproductive biotechnologies for conservation of endangered mammalian species, Anim. Reprod. Sci., 2007, vol. 99, no. 3, pp. 223–243.

    CAS  PubMed  Google Scholar 

  • Arav, A., Cryopreservation of oocytes and embryos, Theriogenology, 2014, vol. 81, pp. 96–102.

    CAS  PubMed  Google Scholar 

  • De Artiñano, A. and Castro, M., Experimental rat models to study the metabolic syndrome, Br. J. Nutr., 2009, vol. 102, pp. 1246–1253.

    Google Scholar 

  • Belyaeva, N.F., Kashirtseva, V.N., Medvedeva, N.V., et al., Zebrafish as a model in biomedical research, Biomed. Khim., 2010, vol. 56, no. 1, pp. 120–131.

    CAS  Google Scholar 

  • Berghmans, S., Butler, P., Goldsmith, P., et al., Zebrafish based assays for the assessment of cardiac, visual and gut function-potential safety screens for early drug discovery, J. Pharmacol. Toxicol. Methods, 2008, vol. 58, pp. 59–68.

    CAS  PubMed  Google Scholar 

  • Berkovitz, A., Eltes, F., Yaari, S., et al., The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm, Hum. Reprod., 2005, vol. 20, pp. 185–190.

    PubMed  Google Scholar 

  • Bockamp, E., Maringer, M., Spangenberg, C., et al., Of mice and models: improved animal models for biomedical research, Physiol. Genomics, 2002, vol. 11, pp. 115–132.

    CAS  PubMed  Google Scholar 

  • Bosch, P., Hernandez-Fonseca, H., Miller, D., et al., Development of antral follicles in cryopreserved cat ovarian tissue transplanted to immunodeficient mice, Theriogenology, 2004, vol. 61, pp. 581–594.

    CAS  PubMed  Google Scholar 

  • Brusentsev, E.Yu., Naprimerov, V.A., and Amstislavsky, S.Ya., Rederivation as a means for laboratory animal purification, Vavil. Zh. Genet. Selektsii, 2011, vol. 15, no. 1, pp. 102–113.

    Google Scholar 

  • Brusentsev, E.Yu., Igonina, T.N., Rozhkova, I.N., et al., The search for methods of freezing and thawing of preimplantation mammalian embryos aimed at preserving the integrity of their zona pellucida, in Materialy Mezhdunarodnoi zaochnoi nauchno-prakticheskoi konferentsii “Teoreticheskie i prakticheskie aspekty sovremennoi kriobiologii” (Proceedings of the International Correspondence Scientific-Practical Conference “Theoretical and Practical Aspects of Modern Cryobiology”), 2014, pp. 247–248.

    Google Scholar 

  • Bwanga, C.O., Cryopreservation of boar semen. I: A literature review, Acta. Vet. Scand., 1991, vol. 32, pp. 431–453.

    CAS  PubMed  Google Scholar 

  • Campbell, K.H., McWhir, J., Ritchie, W.A., and Wilmut, I., Sheep cloned by nuclear transfer from a cultured cell line, Nature, 1996, vol. 380, pp. 64–66.

    CAS  PubMed  Google Scholar 

  • Chen, S.U., Chien, C.L., Wu, M.Y., et al., Novel direct cover vitrification for cryopreservation of ovarian tissues increases follicle viability and pregnancy capability in mice, Hum. Reprod., 2006, vol. 21, pp. 2794–2800.

    PubMed  Google Scholar 

  • Comizzoli, P., Crosier, A.E., Songsasen, N., et al., Advances in reproductive science for wild carnivore conservation, Reprod. Dom. Anim., 2009, vol. 44, pp. 47–52.

    Google Scholar 

  • Cox, S.L., Shaw, J., and Jenkin, G., Transplantation of cryopreserved fetal ovarian tissue to adult recipients in mice, J. Reprod. Fertil., 1996, vol. 107, pp. 315–322.

    CAS  PubMed  Google Scholar 

  • Diller, K.R., Pioneers in cryobiology: Julius von Sachs (1832–1897), Cryo-Letters, 1996, vol. 17, pp. 201–212.

    Google Scholar 

  • Dobrinsky, J.R., Cryopreservation of swine embryos: a chilly past with a vitrifying future, Theriogenology, 2001, vol. 56, pp. 1333–1344.

    CAS  PubMed  Google Scholar 

  • Dong, J., Malsam, J., Bischof, J.C., et al., Spatial distribution of the state of water in frozen mammalian cells, Biophys. J., 2010, vol. 99, pp. 2453–2459.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dorsch, M. and Wedekind, D., Cryopreservation and orthotopic transplantation of rat ovaries, Methods Mol. Biol., 2010, vol. 597, pp. 301–310.

    PubMed  Google Scholar 

  • Driscoll, C.A., Clutton-Brock, J., Kitchener, A.C., and O’Brien, S.J., The taming of the cat. Genetic and archaeological findings hint that wildcats became housecats earlier—and in a different place—than previously thought, Sci. Am., 2009, vol. 300, no. 6, pp. 68–75.

    PubMed  Google Scholar 

  • Ekker, S.C., Zinc finger-based knockout punches for zebrafish genes, Zebrafish, 2008, vol. 5, pp. 121–123.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fahy, G.M., Macfarlane, D.R., Angell, C.A., and Meryman, H.T., Vitrification as an approach to cryopreservation, Cryobiology, 1984, vol. 21, pp. 407–426.

    CAS  PubMed  Google Scholar 

  • Fassbender, M., Hildebrandt, T., Paris, M., et al., Monitoring of xenografted cortex tissue using high resolution ultrasonography, J. Reprod. Dev., 2007, vol. 53, pp. 1023–1034.

    PubMed  Google Scholar 

  • Festing, M.F.W., Baumans, V., Combes, R.D., et al., Reducing the use of laboratory animals in biomedical research: problems and possible solutions, ATLA, 1998, vol. 26, pp. 283–301.

    Google Scholar 

  • Fickel, J., Wagener, A., and Ludwig, A., Semen cryopreservation and the conservation of endangered species, Eur. J. Wildl. Res., 2007, vol. 53, pp. 81–89.

    Google Scholar 

  • FIMRe Board of Directors. FIMRe: Federation of international mouse resources: global networking of resource centers, Mammal Genome, 2006, vol. 17, pp. 363–364.

    Google Scholar 

  • Flint, J. and Eskin, E., Genome-wide association studies in mice, Nat. Rev. Genet, 2012, vol. 13, pp. 807–817.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Foote, R.H., The history of artificial insemination: selected notes and notables, J. Anim. Sci., 2002, vol. 80, pp. 1–10.

    Google Scholar 

  • Frankham, R., Genetics and conservation biology, C. R. Biol., 2003, vol. 326, pp. 22–29.

    Google Scholar 

  • Galiguis, J., Gomez, M.C., Leibo, S.P., and Pope, C.E., Birth of a domestic cat kitten produced by vitrification of lipid polarized in vitro matured oocytes, Cryobiology, 2014, vol. 68, pp. 459–466.

    CAS  PubMed  Google Scholar 

  • Glenister, P. and Thornton, C., Cryoconservation—archiving for the future, Mammal. Genome, 2000, vol. 11, pp. 565–571.

    CAS  Google Scholar 

  • Gondo, Y., Fukumura, R., Murata, T., and Makino, S., Next-generation gene targeting in the mouse for functional genomics, BMB Reports, 2009, vol. 42, pp. 315–323.

    CAS  PubMed  Google Scholar 

  • Griffin, B. and Baker, H.J., Domestic Cats as Laboratory Animals, New York: Academic Press, 2002.

    Google Scholar 

  • Groenen, M.A., Archibald, A.L., Uenishi, H., et al., Analyses of pig genomes provide insight into porcine demography and evolution, Nature, 2012, vol. 491, pp. 393–398.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hagedorn, M., Hsu, E.W., Pilatus, U., et al., Magnetic resonance microscopy and spectroscopy reveal kinetics of cryoprotectant permeation in a multicompartmental biological system, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 7454–7459.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hagedorn, M., Lance, S.L., Fonseca, D.M., et al., Altering fish embryos with aquaporin-3: an essential step toward successful cryopreservation, Biol. Reprod., 2002, vol. 67, pp. 961–966.

    CAS  PubMed  Google Scholar 

  • Han, B. and Bischof, J.C., Direct cell injury associated with eutectic crystallization during freezing, Cryobiology, 2004, vol. 48, pp. 8–21.

    PubMed  Google Scholar 

  • Hayashi, M., Amino, H., Kita, K., and Murase, N., Cryopreservation of nematode Caenorhabditis elegans in the adult stage, Cryo. Letters, 2013, vol. 34, pp. 388–395.

    CAS  PubMed  Google Scholar 

  • Howe, K., Clark, M.D., Torroja, C.F., et al., The zebrafish reference genome sequence and its relationship to the human genome, Nature, 2013, vol. 496, pp. 498–503.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hubalek, Z., Protectants used in the cryopreservation of microorganisms, Cryobiology, 2003, vol. 46, pp. 205–229.

    CAS  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome, Nature, 2004, vol. 431, pp. 931–945.

    Google Scholar 

  • Ivan, A., Pacala, N., Cean, A., and Caraba, V., Practical methods to assess mammalian embryo quality—staining tests comparative study, Anim. Sci. Biotechnol., 2011, vol. 44, pp. 420–423.

    Google Scholar 

  • Ivolgin, D.A., Smolyaninov, A.B., Bagautdinov, Sh.M., et al., Modern systems of IT-monitoring of conditions of cryogenic storage of biological material in the cord blood bank, Vestnik Mezhdunar. Akad. Kholoda, 2013, no. 1, pp. 48–50.

    Google Scholar 

  • Jacob, H.J., Lazar, J., Dwinell, M.R., et al., Gene targeting in the rat: advances and opportunities, Trends Genet., 2010, vol. 26, pp. 510–518.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jochem, M. and Korber, C.H., Extended phase diagrams for the ternery solutions H20-NaCl-hydroxyethylstarch (HES) determined by DSC, Cryobiology, 1987, vol. 24, pp. 513–536.

    CAS  Google Scholar 

  • Kasai, M., Niwa, K., and Iritani, A., Effects of various cryoprotective agents on the survival of unfrozen and frozen mouse embryos, J. Reprod. Fertil., 1981, vol. 3, pp. 175–180.

    Google Scholar 

  • Kimura, Y. and Yanagimachi, R., Intracytoplasmic sperm injection in the mouse, Biol. Reprod., 1995, vol. 52, pp. 709–720.

    CAS  PubMed  Google Scholar 

  • Landel, C.P., Archiving mouse strains by cryopreservation, Lab. Anim., 2005, vol. 34, pp. 50–57.

    Google Scholar 

  • Landel, C.P., Cryopreservation of mouse gametes and embryos, Methods Enzymol., 2010, vol. 476, pp. 85–105.

    CAS  PubMed  Google Scholar 

  • Leibo, S.P. and Songsasen, N., Cryopreservation of gametes and embryos of non-domestic species, Theriogenology, 2002, vol. 57, pp. 303–326.

    CAS  PubMed  Google Scholar 

  • Liard, J.F., Cowley, A.W., Jr., McCaa, R.E., et al., Renin, aldosterone, body fluid volumes, and the baroreceptor reflex in the development and reversal of Goldblatt hypertension in conscious dogs, Circ. Res., 1974, vol. 34, pp. 549–560.

    CAS  PubMed  Google Scholar 

  • Lindeberg, H., Aalto, J., Amstislavsky, S., et al., Surgical recovery and successful surgical transfer of conventionally frozen-thawed embryos in the farmed European polecat (Mustela putorius), Theriogenology, 2003, vol. 60, pp. 1515–1526.

    PubMed  Google Scholar 

  • Luvoni, G.C., Gamete cryopreservation in the domestic cat, Theriogenology, 2006, vol. 66, pp. 101–111.

    CAS  PubMed  Google Scholar 

  • Luyet, B.J., The vitrification of organic colloids and protoplasm, Biodynamica, 1937, no. 29, pp. 1–14.

    Google Scholar 

  • Mahabir, E., Bauer, B., and Schmidt, J., Rodent and germplasm trafficking: risks of microbial contamination in a high-tech biomedical world, ILAR J., 2008, vol. 49, pp. 347–355.

    CAS  PubMed  Google Scholar 

  • Matson, P.L., Graefling, J., Junk, S.M., et al., Cryopreservation of oocytes and embryos: use of a mouse model to investigate effects upon zona hardness and formulate treatment strategies in an in-vitro fertilization programme, Hum. Reprod., 1997, vol. 12, pp. 1550–1553.

    CAS  PubMed  Google Scholar 

  • Mazur, P., Cryobiology: the freezing of biological systems, Science, 1970, vol. 168, pp. 939–949.

    CAS  PubMed  Google Scholar 

  • Mazur, P., Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos, Cell Biophys., 1990, vol. 17, pp. 53–92.

    CAS  PubMed  Google Scholar 

  • Mazur, P., Leibo, S.P., and Seidel, G.E., Jr., Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions, Biol. Reprod., 2008, vol. 78, pp. 2–12.

    CAS  PubMed  Google Scholar 

  • McGann, L.E., Differing actions of penetrating and nonpenetrating cryoprotective agents, Cryobiology, 1978, vol. 15, pp. 382–390.

    CAS  PubMed  Google Scholar 

  • Men, H., Zhao, C., Si, W., et al., Birth of piglets from in vitro-produced, zona-intact porcine embryos vitrified in a closed system, Theriogenology, 2011, vol. 76, pp. 280–289.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mobraaten, L., Mouse embryo cryobanking, J. in vitro Fertiliz. Embryo Transfer, 1986, vol. 3, pp. 28–32.

    CAS  Google Scholar 

  • Mohr, L. and Trounson, A., The use of fluorescein diacetate to assess embryo viability in the mouse, J. Reprod. Fertil., 1980, vol. 58, pp. 189–196.

    CAS  PubMed  Google Scholar 

  • Molinia, F.C., Evans, G., and Maxwell, W.M., Incorporation of penetrating cryoprotectants in diluents for pelletfreezing ram spermatozoa, Theriogenology, 1994, vol. 42, pp. 849–858.

    CAS  PubMed  Google Scholar 

  • Mori, S., Choi, J., Devireddy, R.V., and Bischof, J.C., Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions, Cryobiology, 2012, vol. 65, pp. 242–255.

    CAS  PubMed  Google Scholar 

  • Morris, J.P., Berghmans, S., Zahrieh, D., et al., Zebrafish sperm cryopreservation with N,N-dimethylacetamide, BioTechniques, 2003, vol. 35, pp. 956–958.

    CAS  PubMed  Google Scholar 

  • Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the mouse genome, Nature, 2002, vol. 420, pp. 520–562.

    Google Scholar 

  • Mullen, S.F. and Critser, J.K., The science of cryobiology, Cancer Treat. Res., 2007, vol. 138, pp. 83–109.

    PubMed  Google Scholar 

  • Myalenkova, I.Yu., Laboratory dog, Labor. Zhivotnye, 1994, vol. 4, no. 4, pp. 234–246.

    Google Scholar 

  • Nakagata, N., Production of normal young following insemination of frozen-thawed mouse spermatozoa into fallopian tubes of pseudopregnant females, Exp. Anim., 1992, vol. 41, pp. 519–522.

    CAS  Google Scholar 

  • Nakano, K., Matsunari, H., Nakayama, N., et al., Cloned porcine embryos can maintain developmental ability after cryopreservation at the morula stage, J. Reprod. Dev., 2011, vol. 57, pp. 312–316.

    PubMed  Google Scholar 

  • NISC Comparative Sequencing Program. Initial sequence and comparative analysis of the cat genome, Genome Res., 2007, vol. 17, pp. 1675–1689.

    PubMed Central  Google Scholar 

  • Noyes, N., Boldt, J., and Nagy, Z.P., Oocyte cryopreservation: is it time to remove its experimental label?, J. Assist. Reprod. Genet., 2010, vol. 27, pp. 69–74.

    PubMed Central  PubMed  Google Scholar 

  • Okotrub, K.A. and Surovtsev, N.V., Raman scattering evidence of hydrohalite formation on frozen yeast cells, Cryobiology, 2013, vol. 66, pp. 47–51.

    CAS  PubMed  Google Scholar 

  • Pedro, P.B., Yokoyama, E., Zhu, S.E., et al., Permeability of mouse oocytes and embryos at various developmental stages to five cryoprotectants, J. Reprod. Dev., 2005, vol. 51, pp. 235–246.

    CAS  PubMed  Google Scholar 

  • Pinto, Y.M., Paul, M., and Ganten, D., Lessons from rat models of hypertension: from Goldblatt to genetic engineering, Cardiovasc. Res., 1998, vol. 39, pp. 77–88.

    CAS  PubMed  Google Scholar 

  • Rall, W.F. and Fahy, G.M., Ice-free cryopreservation of mouse embryos at −196 degrees C by vitrification, Nature, 1985, vol. 313, pp. 573–575.

    CAS  PubMed  Google Scholar 

  • Rall, W.F., Mazur, P., and McGrath, J.J., Depression of the ice-nucleation temperature of rapidly cooled mouse embryos by glycerol and dimethyl sulfoxide, Biophys. J., 1983, vol. 41, pp. 1–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rall, W.F., Schmidt, P.M., Lin, X., et al., Factors affecting the efficiency of embryo cryopreservation and rederivation of rat and mouse models, ILAR J., 2000, vol. 41, pp. 221–227.

    CAS  PubMed  Google Scholar 

  • Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution, Nature, 2004, vol. 428, pp. 493–521.

    Google Scholar 

  • Renard, J.P. and Babinet, C., High survival of mouse embryos after rapid freezing and thawing inside plastic straws with 1–2 propanediol as cryoprotectant, J. Exp. Zool., 1984, vol. 230, pp. 443–448.

    CAS  PubMed  Google Scholar 

  • Robles, V., Cabrita, E., and Herraez, M.P., Germplasm cryobanking in zebrafish and other aquarium model species, Zebrafish, 2009, vol. 6, pp. 281–293.

    PubMed  Google Scholar 

  • Roos, A., Liljander, M., Forslid, A., and Mattsson, R., Protocol for providing additional pseudo-pregnant recipient mice for embryo transfer and intra-uterine insemination by plugging in the middle of the day, Scand. J. Lab. Anim. Sci., 2008, vol. 35, pp. 305–310.

    CAS  Google Scholar 

  • Rozhkova, I.N., Brusentsev, E.Yu., and Amstislavsky, S.Ya., Coats of preimplantation mammalian embryos as a target of reproductive technologies, Russ. J. Dev. Biol., 2012, vol. 43, no. 5, pp. 249–258.

    CAS  Google Scholar 

  • Saragusty, J. and Arav, A., Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification, Reproduction, 2011, vol. 141, pp. 1–19.

    CAS  PubMed  Google Scholar 

  • Sato, M., Nagashima, A., Watanabe, T., and Kimura, M., Comparison of intrabursal transfer of spermatozoa, a new method for artificial insemination in mice, with intraoviductal transfer of spermatozoa, J. Assist. Reprod. Genet., 2002, vol. 19, pp. 523–530.

    PubMed Central  PubMed  Google Scholar 

  • Seita, Y., Fujiwara, K., Takizawa, A., et al., Full-term development of rats from oocytes fertilized in vitro using cryopreserved ejaculated sperm, Cryobiology, 2011, vol. 63, pp. 7–11.

    PubMed  Google Scholar 

  • Seok, J., Warren, H.S., Cuenca, A.G., et al., Genomic responses in mouse models poorly mimic human inflammatory diseases, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 3507–3512.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shek, W.R., Role of housing modalities on management and surveillance strategies for adventitious agents of rodents, ILAR J., 2008, vol. 49, pp. 316–325.

    CAS  PubMed  Google Scholar 

  • Snow, M., Cox, S.L., Jenkin, G., et al., Generation of live young from xenografted mouse ovaries, Science, 2002, vol. 297, no. 5590, p. 2227.

    CAS  PubMed  Google Scholar 

  • Takeshima, T., Nakagata, N., and Ogawa, S., Cryopreservation of mouse spermatozoa, Jikken Dobutsu, 1991, vol. 40, pp. 493–497.

    CAS  PubMed  Google Scholar 

  • The Canine Genome Sequencing Project. Genome sequence, comparative analysis and haplotype structure of the domestic dog, Nature, 2005, vol. 438, pp. 803–819.

    Google Scholar 

  • Thomassen, R. and Farstad, W., Artificial insemination in canids: a useful tool in breeding and conservation, Theriogenology, 2009, vol. 71, pp. 190–199.

    CAS  PubMed  Google Scholar 

  • Tikhonov, V.N. and Bobovich, V.E., Genetics and acquired possibilities of using supersmall mini pigs for medical and biotechnological purposes, Vavilov. Zh. Genet. Selektsii, 2011, vol. 15, no. 3, pp. 600–609.

    Google Scholar 

  • Tsai, S., Rawson, D.M., and Zhang, T., Development of cryopreservation protocols for early stage zebrafish (Danio rerio) ovarian follicles using controlled slow cooling, Theriogenology, 2009, vol. 71, pp. 1226–1233.

    CAS  PubMed  Google Scholar 

  • Tsai, S., Rawson, D.M., and Zhang, T., Development of in vitro culture method for early stage zebrafish (Danio rerio) ovarian follicles for use in cryopreservation studies, Theriogenology, 2010, vol. 74, pp. 290–303.

    CAS  PubMed  Google Scholar 

  • Vajta, G., Nagy, Z.P., Cobo, A., et al., Vitrification in assisted reproduction: myths, mistakes, disbeliefs and confusion, Reprod. Biomed. Online, 2009, vol. 19, pp. 1–7.

    PubMed  Google Scholar 

  • Veprintsev, B.N. and Rott, N.N., Problema sokhraneniya genofonda (The Problem of Preservation of the Gene Pool), Pushchino: ONTI NTsBI AN SSSR, 1984.

    Google Scholar 

  • Whittingham, D.G., Leibo, S.P., and Mazur, P., Survival of mouse embryos frozen to −196 degrees and −269 degrees C, Science, 1972, vol. 178, pp. 411–414.

    CAS  PubMed  Google Scholar 

  • Whyte, J.J. and Prather, R.S., Genetic modifications of pigs for medicine and agriculture, Mol. Reprod. Dev., 2011, vol. 78, pp. 879–891.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Willadsen, S.M., Factors affecting the survival of sheep embryos during-freezing and thawing, Ciba. Found. Symp., 1977, no. 52, pp. 175–201.

    Google Scholar 

  • Wolfe, H.G., Artificial insemination of the laboratory mouse (Mus musculus), Lab. Anim. Care, 1967, vol. 17, pp. 426–432.

    CAS  PubMed  Google Scholar 

  • Yang, H. and Tiersch, T.R., Current status of sperm cryopreservation in biomedical research fish models: zebrafish, medaka, and Xiphophorus, Comp. Biochem. Physiol. C. Toxicol. Pharmacol., 2009, vol. 149, pp. 224–232.

    PubMed Central  PubMed  Google Scholar 

  • Yoshiki, A., Ike, F., Mekada, K., et al., The mouse resources at the RIKEN BioResource center, Exp. Anim., 2009, vol. 58, pp. 85–96.

    CAS  PubMed  Google Scholar 

  • Yuan, S. and Diller, K.R., An optical differential scanning calorimeter cryomicroscope, J. Microsc., 2005, vol. 218, pp. 85–93.

    CAS  PubMed  Google Scholar 

  • Zambelli, D. and Cunto, M., Transcervical artificial insemination in the cat, Theriogenology, 2005, vol. 64, pp. 698–705.

    PubMed  Google Scholar 

  • Zhang, T., Kawson, D.M., and Morris, G.J., Cryopreservation of pre-hatch embryos of zebrafish, Aquur. Living Resour., 1993, vol. 6, pp. 145–153.

    Google Scholar 

  • Zhang, W., Yi, K., Yan, H., and Zhou, X., Advances on in vitro production and cryopreservation of porcine embryos, Anim. Reprod. Sci., 2012, vol. 132, pp. 115–122.

    CAS  PubMed  Google Scholar 

  • Zhmakin, A.I., Physical aspects of cryobiology, Usp. Fiz. Nauk, 2008, vol. 178, no. 3, pp. 243–266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Amstislavsky.

Additional information

Original Russian Text © S.Ya. Amstislavsky, E.Yu. Brusentsev, K.A. Okotrub, I.N. Rozhkova, 2015, published in Ontogenez, 2015, Vol. 46, No. 2, pp. 67–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amstislavsky, S.Y., Brusentsev, E.Y., Okotrub, K.A. et al. Embryo and gamete cryopreservation for genetic resources conservation of laboratory animals. Russ J Dev Biol 46, 47–59 (2015). https://doi.org/10.1134/S1062360415020022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360415020022

Keywords

Navigation