Skip to main content
Log in

Damaging and Defense Processes Induced in Plant Cells by UVB Radiation

  • CELL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

UVB radiation (290–320 nm) activates various signaling mechanisms triggering the processes of programmed cell death in plants or their protection against the damaging action of this type of radiation. In the case of high dosages of UVB radiation, the mechanisms of cell death are associated with DNA damage and oxidative stress. In the first case, activation of DNA damage checkpoints and cell cycle arrest may occur; in the second case, cytochrome c is released from mitochondria with the subsequent activation of metacaspases. According to the existing data, both mechanisms induce DNA fragmentation and other changes typical for apoptotic cells, while low-intensity UVB radiation, which is perceived by a UVR8 photoreceptor, initiates protective processes promoting plant acclimatization to sunlight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ballare, C.L., Caldwell, M.M., Flint, S.D., Robinson, S.A., and Bornman, J.F., Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change, Photochem. Photobiol. Sci., 2011, vol. 10, pp. 226–241.

    Article  CAS  PubMed  Google Scholar 

  2. Bartels, S., Anderson, J.C., Gonzalez Besteiro, M.A., Carreri, A., Hirt, H., Buchala, A., Metraux, J.P., Peck, S.C., and Ulm, R., MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis, Plant Cell, 2009, vol. 21, pp. 2884–2897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Biever, J.J., Brinkman, D., and Gardner, G., UV-B inhibition of hypocotyls growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation, J. Exp. Bot., 2014, vol. 65, pp. 2949–2961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brosche, M. and Strid, A., Molecular events following perception of ultraviolet-B radiation by plants, Physiol. Plantarum, 2003, vol. 117, pp. 1–10.

    Article  CAS  Google Scholar 

  5. Brown, B.A. and Jenkins, G.I., UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH, Plant Physiol., 2008, vol. 146, pp. 576–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brown, B.A., Cloix, C., Jiang, G.H., Kaiserli, E., Herzyk, P., Kliebenstein, D.I., and Jenkins, G.I., UV-B specific signaling component orchestrates plant UV protection, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 18225–18230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown, B.A., Headland, L.R., and Jenkins, G.I., UV-B action spectrum for UVR8-mediated HY5 transcript accumulation in Arabidopsis, Photochem. Photobiol., 2009, vol. 85, pp. 1147–1155.

    Article  CAS  PubMed  Google Scholar 

  8. Buer, C.S., Imin, N., and Djordjevic, M.A., Flavonoids: new roles for old molecules, J. Integrat. Plant Biol., 2010, vol. 52, pp. 98–111.

    Article  CAS  Google Scholar 

  9. Cadet, J., Douki, T., and Ravanat, J.-L., Oxidatevely generated damage to cellular DNA by UVB and UVA radiation, Photochem. Photobiol., 2015, vol. 91, pp. 140–155.

    Article  CAS  PubMed  Google Scholar 

  10. Caldwell, M.M., Bornman, J.F., Ballare, C.L., Flint, S.D., and Kulandaivelu, G., Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors, Photochem. Photobiol., 2007, vol. 6, pp. 252–266.

    Article  CAS  Google Scholar 

  11. Christie, J.M., Arvai, A.S., Baxter, K.J., Heilmann, M., Pratt, A.J., O’Hara, A., Kelly, S.M., Hothorn, M., Smith, B.O., Hitomi, K., Jenkins, G.I., and Getzoff, E.D., Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges, Science, 2012, vol. 335, pp. 1492–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ciccia, A. and Elledge, S.J., The DNA damage response: making it safe to play with knives, Mol. Cell, 2010, vol. 40, pp. 179–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cimprich, K.A. and Cortez, D., ATR: an essential regulator of genome integrity, Nat. Rev. Mol. Cell. Biol., 2008, vol. 9, pp. 616–627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cloix, C., Kaiserli, E., Heilmann, M., Baxter, K.J., Brown, B.A., O’Hara, A., Smith, B.O., Christie, J.M., and Jenkins, G.I., C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, pp. 16366–16370.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Culligan, K., Tissier, A., and Britt, A., ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana, Plant Cell, 2004, vol. 16, pp. 1091–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Curtis, M.J. and Hays, J.B., Cooperative responses of DNA-damage-activated protein kinases ATR and ATM and DNA translesion polymerases to replication-locking DNA damage in a stem-cell niche, DNA Repair, 2011, vol. 10, pp. 1272–1281.

    Article  CAS  PubMed  Google Scholar 

  17. Danon, A., Rotari, V.I., Gordon, A., Mailhac, N., and Gallois, P., Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and Defender against apoptotic Death, J. Biol. Chem., 2004, vol. 279, pp. 779–787.

    Article  CAS  PubMed  Google Scholar 

  18. Dubest, S., Gallego, M.E., and White, C.I., Role of the AtRad1 endonuclease in homologous recombination in plants, EMBO Rep., 2002, vol. 3, pp. 1049–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Favory, J.J., Stec, A., Gruber, H., Rizzini, L., Oravecz, A., Funk, M., Albert, A., Cloix, C., Jenkins, G.I., and Oakeley, E.A., Interaction of COP1 and UVR8 regulates UVB-induced photomorphogenesis and stress acclimation in Arabidopsis, EMBO J., 2009, vol. 28, pp. 591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fomicheva, A.S., Tuzhikov, F.I., Beloshistov, R.E., Trusova, S.V., Galiullina, R.A., Mochalova, L.V., Chichkova, N.V., and Vartapetyan, A.B., Programmed cell death in plants, Usp. Biol. Khim., 2012, vol. 52, pp. 97–126.

    CAS  Google Scholar 

  21. Fraikin, G.Ya., Strakhovskaya, M.G., and Rubin, A.B., Biological photoreceptors of light-dependent regulatory processes, Biochemistry (Moscow), 2013, vol. 78, pp. 1238–1253.

    CAS  PubMed  Google Scholar 

  22. Frohnmeyer, H. and Staiger, D., Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection, Plant Physiol., 2003, vol. 133, pp. 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Furukawa, T., Curtis, M.J., Tominey, C.M., Duong, Y.H., Wilcox, B.W.L., Aggoune, D., Hays, J.B., and Britt, A.B., A shared DNA-damage response pathway for induction of stem-cell death by UVB and by gamma irradiation, DNA Repair, 2010, vol. 9, pp. 940–948.

    Article  CAS  PubMed  Google Scholar 

  24. Gao, C., Xing, D., Li, L., and Zhang, L., Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure, Planta, 2008, vol. 227, pp. 755–767.

    Article  CAS  PubMed  Google Scholar 

  25. Gardner, G., Lin, C., Tobin, E.M., Loehrer, H., and Brinkman, D., Photobiological properties of the inhibition of etiolated Arabidopsis seedling growth by ultraviolet-B irradiation,Plant Cell Environ.,vol. 32, pp. 1573–1583.

  26. Girotti, A.W., Photosensitized oxidation of membrane lipids, J. Photochem. Photobiol. B, 2001, vol. 63, pp. 103–113.

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez Besteiro, M.A., Bartels, S., Albert, A., and Ulm, R., Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway, Plant J., 2011, vol. 68, pp. 727–737.

    Article  CAS  PubMed  Google Scholar 

  28. Gruber, H., Heijde, M., Heller, W., Albert, A., Seidlitz, H.K., and Ulm, R., Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 20132–20137.

    Article  PubMed  PubMed Central  Google Scholar 

  29. He, R., Drury, G.E., Rotari, V.I., Gordon, A., Willer, M., Farzaneh, T., Woltering, E.J., and Gallois, P., Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis, J. Biol. Chem., 2008, vol. 283, pp. 774–783.

    Article  CAS  PubMed  Google Scholar 

  30. Heijde, M. and Ulm, R., UV-B photoreceptor-mediated signaling in plants, Trends Plant Sci., 2012, vol. 17, pp. 230–237.

    Article  CAS  PubMed  Google Scholar 

  31. Heijde, M. and Ulm, R., Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 1113–1118.

    Article  PubMed  Google Scholar 

  32. Heilmann, M. and Jenkins, G.I., Rapid reversion from monomer to dimer regenerates the ultraviolet-B photoreceptor UV resistance locus8 in intact Arabidopsis plants, Plant Physiol., 2013, vol. 161, pp. 547–555.

    Article  CAS  PubMed  Google Scholar 

  33. Helton, E.S. and Chen, X., P53 modulation of the DNA damage response, J. Cell. Biochem., 2007, vol. 100, pp. 883–896.

    Article  CAS  PubMed  Google Scholar 

  34. Herrlich, P., Karin, M., and Weiss, C., Supreme enlightenment: damage recognition and signaling in the mammalian response, Mol. Cell, 2008, vol. 29, pp. 279–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jenkins, G.I., Signal transduction in responses to UV-B radiation, Annu. Rev. Plant Biol., 2009, vol. 60, pp. 407–431.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang, L., Wang, Y., Bjorn, L.O., and Li, S., Arabidopsis radical-induced cell death is involved in UV-B signaling, Photochem. Photobiol. Sci., 2009, vol. 8, pp. 838–846.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, L., Wang, Y., Bjorn, L.O., and Li, S., UV-B induced DNA damage mediates expression changes of cell cycle regulatory genes in Arabidopsis root tips, Planta, 2011, vol. 233, pp. 831–841.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang, L., Wang, Y., Li, Q.F., Bjorn, L.O., He, J.X., and Li, S.S., Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity, Cell Res., 2012, vol. 22, pp. 1046–1057.

  39. Kalbina, I. and Strid, A., The role of NADPH oxidase and MAP kinase phosphatase in UV-B-dependent gene expression in Arabidopsis, Plant, Cell Environ., 2006, vol. 29, pp. 1783–1793.

    Article  CAS  Google Scholar 

  40. Lam, E. and Zhang, Y., Regulating the reapers: activating metacaspases for programmed cell death, Trends Plant Sci., 2012, vol. 17, pp. 487–494.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Z., Hossain, G.S., Islas-Osuna, M.A., Mitchell, D.L., and Mount, D.W., Repair of UV damage in plants by nucleotide excision repair: Arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1, Plant J., 2000, vol. 21, pp. 519–528.

    Article  CAS  PubMed  Google Scholar 

  42. Lytvyn, D.I., Yemets, A.I., and Blume, Y.B., UV-B overexposure induces programmed cell death in a BY-2 tobacco cell line, Environ. Exp. Bot., 2010, vol. 68, pp. 51–57.

    Article  CAS  Google Scholar 

  43. Mackerness, S., John, C.F., Jordan, B., and Thomas, B., Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide, FEBS Lett., 2001, vol. 489, pp. 237–242.

    Article  CAS  Google Scholar 

  44. Mannuss, A., Trapp, O., and Puchta, H., Gene regulation in response to DNA damage, Biochim. Biophys. Acta, 2012, vol. 1819, pp. 154–165.

    Article  CAS  PubMed  Google Scholar 

  45. McKenzie, R.L., Aucamp, P.J., Bais, A.F., Bjorn, L.O., and Iljas, M., Changes in biologically-active ultraviolet radiation reaching the Earth’s surface, Photochem. Photobiol. Sci., 2007, vol. 6, pp. 218–231.

    Article  CAS  PubMed  Google Scholar 

  46. Mittler, R., Vanderauwera, S., Gollery, M., and Van Breusegem, F., Reactive oxygen gene network of plants, Trends Plant Sci., 2004, vol. 9, pp. 490–498.

    Article  CAS  PubMed  Google Scholar 

  47. Moller, I.M., Jensen, P.E., and Hansson, A., Oxidative modifications to cellular components in plants, Annu. Rev. Plant Biol., 2007, vol. 58, pp. 459–481.

    Article  CAS  PubMed  Google Scholar 

  48. Morales, L.O., Brosche, M., Vainonen, J., Jenkins, G.I., Wargent, J.J., Sipari, N., Strid, A., Lindfors, A.V., Tegelberg, R., and Aphalo, P.J., Multiple roles for UV resistance locus 8 in regulating gene expression and metabolite accumulation in Arabidopsis under solar ultraviolet radiation, Plant Physiol., 2013, vol. 161, pp. 744–759.

    Article  CAS  PubMed  Google Scholar 

  49. Nakajima, S., Sugiyama, M., Iwai, S., Hitomi, K., Otoshi, E., Kim, S., Jiang, C.Z., Todo, T., Britt, A.B., and Yamamoto, K., Cloning and characterization of a gene (UVR3) required for photorepair of 6–4 photoproducts in Arabidopsis thaliana, Nucleic Acids Res., 1998, vol. 26, pp. 638–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nawkar, G.M., Maibam, P., Park, J.H., Sahi, V.P., Lee, S.Y., and Kang, C.H., UV-induced cell death in plants, Int. J. Mol. Sci., 2013, vol. 14, pp. 1608–1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. O’Hara, A. and Jenkins, G.I., In vivo function of tryptophans in the Arabidopsis UV-B photoreceptor UVR8, Plant Cell, 2012, vol. 24, pp. 3755–3766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Paul, N.D. and Gwynn, J.D., Ecological roles of solar UV radiation: towards an integrated approach, Trends Ecol. Evol., 2003, vol. 18, pp. 48–55.

    Article  Google Scholar 

  53. Reape, T.J. and McCabe, P.F., Apoptotic-like programmed cell death in plants, New Phytol., 2008, vol. 180, pp. 13–26.

    Article  CAS  PubMed  Google Scholar 

  54. Ries, G., Heller, W., Puchta, H., Sandermann, H., Seidlitz, H.K., and Hohn, B., Elevated UV-B radiation reduces genome stability in plants, Nature, 2000, vol. 406, pp. 98–101.

    Article  CAS  PubMed  Google Scholar 

  55. Rizzini, L., Favory, J.J., Cloix, C., Faggionato, D., Hara, A.O., Kaiserli, E., Baumeister, R., Schafer, E., Nagy, F., and Jenkins, G.I., Perception of UV-B by the Arabidopsis UVR8 protein, Science, 2011, vol. 332, pp. 103–106.

    Article  CAS  PubMed  Google Scholar 

  56. Sakamoto, A.N., Lan, V.T., Puripunyavanich, V., Hase, Y., Yokota, Y., Shikazono, N., Nakagawa, M., Narumi, I., and Tanaka, A., UVB-hypersensitive mutant in Arabidopsis thaliana is defective in the DNA damage response, Plant J., 2009, vol. 60, pp. 509–517.

    Article  CAS  PubMed  Google Scholar 

  57. Sancar, A., Lindsey-Boltz, L.A., Unzal-Kacmaz, K., and Linn, S., Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints, Annu. Rev. Biochem., 2004, vol. 73, pp. 39–85.

    Article  CAS  PubMed  Google Scholar 

  58. Sancar, A., Structure and function of photolyase and in vivo enzymology: 50th anniversary, J. Biol. Chem., 2008, vol. 283, pp. 32153–32157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shiloh, Y. and Ziv, Y., The ATM protein kinase: regulating the cellular response to genotoxic stress, and more, Nat. Rev. Mol. Cell. Biol., 2013, vol. 14, pp. 197–210.

    Article  CAS  PubMed  Google Scholar 

  60. Sinha, R.P. and Hader, D.P., UV-induced DNA damage and repair: a review, Photochem. Photobiol. Sci., 2002, vol. 1, pp. 225–236.

    Article  CAS  PubMed  Google Scholar 

  61. Stracke, R., Favory, J.J., Gruber, H., Bartelniewoeh-ner, L., Bartels, S., Binkert, M., Funk, M., Weisshaar, B., and Ulm, R., The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation, Plant Cell Environ., 2010, vol. 33, pp. 88–103.

    CAS  PubMed  Google Scholar 

  62. Takahashi, S., Kojo, K.H., Kutsuna, N., Endo, M., Toki, S., Isoda, H., and Hasezawa, S., Differential responses to high- and low-dose ultraviolet-B stress in tobacco Bright Yellow-2 cells, Front. Plant Sci., 2015, vol. 6, pp. 1–10.

    Google Scholar 

  63. Teranishi, M., Nakamura, K., Morioka, H., Yamamoto, K., and Hidema, J., The native cyclobutane pyrimidine dimer photolyase of rice is phosphorylated, Plant Physiol., 2008, vol. 146, pp. 1941–1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ulm, R., Molecular genetics of genotoxic stress signaling in plants, Topics Curr. Genet., 2003, vol. 4, pp. 217–240.

    Article  Google Scholar 

  65. Ulm, R. and Nagy, F., Signaling and gene regulation in response to ultraviolet light, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 477–482.

    Article  CAS  PubMed  Google Scholar 

  66. Watanabe, N. and Lam, E., Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysyne-specific cysteine proteases and activate apoptosis-like cell death in yeast, J. Biol. Chem., 2005, vol. 280, pp. 14691–14699.

    Article  CAS  PubMed  Google Scholar 

  67. Wu, D., Hu, Q., Yan, Z., Chen, W., Yan, C., Huang, X., Zhang, J., Yang, P., and Wang, J., Structural basis of ultraviolet-B perception by UVR8, Nature, 2012, vol. 484, pp. 214–219.

    Article  CAS  PubMed  Google Scholar 

  68. Xie, Y., Xu, D., Cui, W., and Shen, W., Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defense, J. Exp. Bot., 2012, vol. 63, pp. 3869–3883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yao, N., Eisfelder, B., Marvin, J., and Greenberg, J.T., The mitochondrion—an organelle commonly involved in programmed cell death in Arabidopsis thaliana, Plant J., 2004, vol. 40, pp. 596–610.

    Article  CAS  PubMed  Google Scholar 

  70. Yoshiyama, K., Conklin, P.A., Huefner, N.D., and Britt, A.B., Suppressor of gamma response 1 (sog1) encodes a putative transcription factor governing multiple responses to DNA damage, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 12843–12848.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yoshiyama, K.O., Sakaguchi, K., and Kimura, S., DNA damage response in plants: conserved and variable response compared to animals, Biology, 2013a, vol. 2, pp. 1338–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoshiyama, K.O., Kobayashi, J., Ogita, N., Ueda, M., Kimura, S., Maki, H., and Umeda, M., ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis, EMBO Rep., 2013b, vol. 14, pp. 817–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang, L., Xu, Q., Xing, D., Gao, C., and Xiong, H., Real time detection of caspase-3-like protease activation in vivo using fluorescence resonance energy transfer during plant programmed cell death induced by ultraviolet C overexposure, Plant Physiol., 2009, vol. 150, pp. 1773–1783.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhou, B.B. and Elledge, S.J., The DNA damage response: putting checkpoints in perspective, Nature, 2000, vol. 408, pp. 433–439.

    Article  CAS  PubMed  Google Scholar 

  75. Zhou, C., Cai, Z., Guo, Y., and Gan, S., An Arabidopsis mitogen-activated protein kinase cascade MPK9–MPK6 plays a role in leaf senescence, Plant Physiol., 2009, vol. 150, pp. 167–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Belenikina.

Additional information

Translated by N. Statsyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraikin, G.Y., Belenikina, N.S. & Rubin, A.B. Damaging and Defense Processes Induced in Plant Cells by UVB Radiation. Biol Bull Russ Acad Sci 45, 519–527 (2018). https://doi.org/10.1134/S1062359018060031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359018060031

Navigation