Skip to main content
Log in

Detection Limits of Immunoanalytical Systems: Limiting Factors and Methods of Reduction

  • REVIEWS
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

One of the priority directions in the development of modern immunoanalytical systems is a reliable determination of analytes in very low concentrations. In this regard, an assessment of the factors influencing the detection limit and restricting its further decrease is in great demand. This mini-review considers a variety of immunoanalytical systems and theoretical estimation of their detection limits. The possibilities of reducing the detection limit provided by changing the composition of the detected immune complexes, using new markers included in these complexes, various methods of their registration, and enhancing the recorded signal are characterized. The approaches proposed for the detection of single molecules of target analytes in tested samples are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Wild, D., The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques, Amsterdam: Elsevier, 2013, 4th ed.

    Google Scholar 

  2. O’Kennedy, R. and Murphy, C., Immunoassays: Development, Applications and Future Trends, Singapore: Jenny Stanford, 2017.

    Book  Google Scholar 

  3. Vashist, S.K. and Luong, J.H.T., Handbook of Immunoassay Technologies: Approaches, Performances, and Applications, Amsterdam: Academic, 2018.

    Google Scholar 

  4. Loock, H.P. and Wentzell, P.D., Sens. Actuators, B, 2012, vol. 173, p. 157.

    Article  CAS  Google Scholar 

  5. Masson, J.F., ACS Sens., 2020, vol. 5, no. 11, p. 3290.

    Article  CAS  PubMed  Google Scholar 

  6. Molina-Fernandez, I., Leuermann, J., Ortega-Monux, A., Wanguemert-Perez, J.G., and Halir, R., Opt. Express, 2019, vol. 27, no. 9, p. 12616.

    Article  CAS  PubMed  Google Scholar 

  7. Ju, H., J. Anal. Test., 2017, vol. 1, no. 1, p. 7.

    Article  Google Scholar 

  8. Wu, Y.F., Tilley, R.D., and Gooding, J.J., J. Am. Chem. Soc., 2019, vol. 141, no. 3, p. 1162.

    Article  CAS  PubMed  Google Scholar 

  9. Momenbeitollahi, N., Cloet, T., and Li, H.Y., Anal. Bioanal. Chem., 2021, vol. 413, no. 24, p. 5995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shirshahi, V. and Liu, G., TrACTrends Anal. Chem., 2021, vol. 136, 116200.

    Article  CAS  Google Scholar 

  11. Van-Thuan, N., Song, S., Park, S., and Joo, C., Biosens. Bioelectron., 2020, vol. 152, 112015.

    Article  CAS  Google Scholar 

  12. Ribatti, D., Clin. Exp. Med., 2009, vol. 9, no. 4, p. 253.

    Article  PubMed  Google Scholar 

  13. Kanyavuz, A., Marey-Jarossay, A., Lacroix-Desmazes, S., and Dimitrov, J.D., Nat. Rev. Immunol., 2019, vol. 19, no. 6, p. 355.

    Article  CAS  PubMed  Google Scholar 

  14. Leenaars, M. and Hendriksen, C.F.M., ILAR J., 2005, vol. 46, no. 3, p. 269.

    Article  CAS  PubMed  Google Scholar 

  15. Howard, G.C. and Kaser, M.R., Making and Using Antibodies: A Practical Handbook, Boca Raton: Taylor & Francis, 2014, 2nd ed.

    Google Scholar 

  16. Lee, Y.J. and Jeong, K.J., J. Biosci. Bioeng., 2015, vol. 120, no. 5, p. 483.

    Article  CAS  PubMed  Google Scholar 

  17. Li, P.W., Zhang, W., Zhang, Z.W., Zhang, Q., and Chen, Z.Y., Curr. Org. Chem., 2017, vol. 21, no. 26, p. 2606.

    CAS  Google Scholar 

  18. Wang, Y., Zhang, C., and Liu, F., Food Agric. Immunol., 2020, vol. 31, no. 1, p. 1079.

    Article  CAS  Google Scholar 

  19. Firestone, G.L. and Winguth, S.D., Methods Enzymol., 1990, vol. 182, p. 688.

    Article  CAS  PubMed  Google Scholar 

  20. Dzantiev, B.B. and Zherdev, A.V., in Biokhimicheskie metody analiza (Biochemical Methods of Analysis), Dzantiev, B.B., Ed., Moscow: Nauka, 2010, p. 303.

  21. Dinis-Oliveira, R.J., Bioanalysis, 2014, vol. 6, no. 21, p. 2877.

    Article  CAS  PubMed  Google Scholar 

  22. Wu, A.H.B., Clin. Chim. Acta, 2006, vol. 369, no. 2, p. 119.

    Article  CAS  PubMed  Google Scholar 

  23. Takkinen, K. and Zvirbliene, A., Curr. Opin. Biotechnol., 2019, vol. 55, p. 16.

    Article  CAS  PubMed  Google Scholar 

  24. Dong, J. and Ueda, H., Sensors, 2021, vol. 21, no. 4, 1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eangoor, P., Das, S., and Pucc, V., Bioanalysis, 2020, vol. 12, no. 14, p. 1757.

    Article  CAS  PubMed  Google Scholar 

  26. Immunoassays ELISA & CLIA, Antrim: Fortress Diagnostics, 2020. www.fortressdiagnostics.com/news/ 2020/march/extensive-range-of-high-quality-immunoassays. Accessed November 11, 2021.

  27. Dzantiev, B.B., Urusov, A.E., and Zherdev, A.V., Biotechnol. Acta, 2013, vol. 6, no. 4, p. 94.

    Article  Google Scholar 

  28. Miyai, K., in Principles and Practice of Immunoassay, Price, C.P. and Newman, D.J., Eds., London: Palgrave Macmillan, 1991, p. 246.

    Google Scholar 

  29. Sotnikov, D.V., Zherdev, A.V., and Dzantiev, B.B., Biochemistry (Moscow), 2017, vol. 82, no. 13, p. 1744.

    Article  CAS  Google Scholar 

  30. Liu, A.P., Anfossi, L., Shen, L.LiC., and Wang, X.H., Trends Food Sci. Technol., 2018, vol. 71, p. 181.

    Article  CAS  Google Scholar 

  31. Li, Y., Zhang, G., Mao, X., Yang, S.P., De Ruyck, K., and Wu, Y.N., TrAC—Trends Anal. Chem., 2018, vol. 103, p. 198.

    Article  CAS  Google Scholar 

  32. Jackson, T.M. and Ekins, R.P., J. Immunol. Methods, 1986, vol. 87, p. 13.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor, J., Picelli, G., and Harrison, D.J., Electrophoresis, 2001, vol. 22, p. 3699.

    Article  CAS  PubMed  Google Scholar 

  34. Woolley, C.F., Hayes, M.A., Mahanti, P., Gilman, S.D., and Taylor, T., Anal. Bioanal. Chem., 2015, vol. 407, no. 28, p. 8605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodbard, D. and Feldman, Y., Immunochemistry, 1978, vol. 15, no. 2, p. 71.

    Article  CAS  PubMed  Google Scholar 

  36. Rodbard, D., Feldman, Y., Jaffe, M.L., and Miles, L.E., Immunochemistry, 1978, vol. 15, no. 2, p. 77.

    Article  CAS  PubMed  Google Scholar 

  37. Merrill, S.J., J. Immunol. Methods, 1998, vol. 216, nos. 1–2, p. 69.

    Article  CAS  PubMed  Google Scholar 

  38. Hayashi, Y., Matsuda, R., Maitani, T., Imai, K., Nishimura, W., Ito, K., and Maeda, M., Anal. Chem., 2004, vol. 76, no. 5, p. 1295.

    Article  CAS  PubMed  Google Scholar 

  39. Choi, D.H., Katakura, Y., Matsuda, R., Hayashi, Y., Hirobe, M., Goda, Y., Ninomiya, K., and Shioya, S., Anal. Sci., 2007, vol. 23, no. 2, p. 215.

    Article  PubMed  Google Scholar 

  40. Qian, S.Z. and Bau, H.H., Anal. Biochem., 2003, vol. 322, no. 1, p. 89.

    Article  CAS  PubMed  Google Scholar 

  41. Qian, S.Z. and Bau, H.H., Anal. Biochem., 2004, vol. 326, no. 2, p. 211.

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Z., He, X., Li, A., Qu, Z., and Xu, F., Analyst, 2019, vol. 144, no. 18, p. 5394.

    Article  CAS  PubMed  Google Scholar 

  43. Sotnikov, D.V., Zherdev, A.V., Byzova, N.A., Zvereva, E.A., Bartosh, A.V., and Dzantiev, B.B., Biochem. Eng. J., 2020, vol. 164, 107763.

    Article  CAS  Google Scholar 

  44. Sotnikov, D.V., Zherdev, A.V., and Dzantiev, B.B., Anal. Chem., 2017, vol. 89, no. 8, p. 4419.

    Article  CAS  PubMed  Google Scholar 

  45. Worsfold, P.J. and Hughes, A., Analyst, 1984, vol. 109, p. 339.

    Article  CAS  Google Scholar 

  46. Pribyl, M., Snita, D., Hasal, P., and Marek, M., Chem. Eng. J., 2004, vol. 101, nos. 1–3, p. 303.

    Article  CAS  Google Scholar 

  47. Zuber, E., Rosso, L., Darbouret, B., Socquet, F., Mathis, G., and Flandrois, J.P., J. Immunoassay, 1997, vol. 18, no. 1, p. 21.

    Article  CAS  PubMed  Google Scholar 

  48. Naruse, M., Morishita, M., Onodera, T., Toko, K., and Hayashi, Y., Sens. Mater., 2016, vol. 28, no. 3, p. 219.

    CAS  Google Scholar 

  49. Taylor, J., Picelli, G., and Harrison, D.J., Electrophoresis, 2001, vol. 22, no. 17, p. 3699.

    Article  CAS  PubMed  Google Scholar 

  50. Roy, P. and Cherng-Wen, D., Sens. Actuators, B, 2009, vol. 139, no. 2, p. 682.

    Article  CAS  Google Scholar 

  51. Wu, D. and Voldman, J., Biosens. Bioelectron., 2020, vol. 154, 112070.

    Article  CAS  PubMed  Google Scholar 

  52. Yanagisawa, N. and Dutta, D., Anal. Chim. Acta, 2014, vol. 817, p. 28.

    Article  CAS  PubMed  Google Scholar 

  53. Rafat, N., Satoh, P., Barton, S.C., and Worden, R.M., Biosensors, 2020, vol. 10, no. 10, 144.

    Article  CAS  PubMed Central  Google Scholar 

  54. Gasperino, D., Baughman, T., Hsieh, H.V., Bell, D., and Weigl, B.H., Ann. Rev. Anal. Chem., 2018, vol. 11, no. 11, p. 219.

    Article  Google Scholar 

  55. Brown, E.N., McDermott, T.J., Bloch, K.J., and McCollom, A.D., Clin. Chem., 1996, vol. 42, p. 893.

    Article  CAS  PubMed  Google Scholar 

  56. Ekins, R. and Kelso, D., Clin. Chem., 2011, vol. 57, no. 3, p. 372.

    Article  CAS  PubMed  Google Scholar 

  57. Hsieh, H.V., Dantzler, J.L., and Weigl, B.H., Diagnostics, 2017, vol. 7, no. 2, 29.

    Article  CAS  PubMed Central  Google Scholar 

  58. Bishop, J.D., Hsieh, H.V., Gasperino, D.J., and Weigl, B.H., Lab Chip, 2019, vol. 19, no. 15, p. 2486.

    Article  CAS  PubMed  Google Scholar 

  59. Jeney, C., Dobay, O., Lengyel, A., Adam, E., and Nasz, I., J. Immunol. Methods, 1999, vol. 223, no. 2.

  60. Luo, W., Pla-Roca, M., and Juncker, D., Anal. Chem., 2011, vol. 83, no. 14, p. 5767.

    Article  CAS  PubMed  Google Scholar 

  61. Joelsson, D., Moravec, P., Troutman, M., Pigeon, J., and DePhillips, P., J. Immunol. Methods, 2018, vol. 337, p. 35.

    Article  CAS  Google Scholar 

  62. Zhao, J., Nussinov, R., Wu, W.-J., and Ma, B.Y., Antibodies, 2018, vol. 7, no. 3, 22.

    Article  CAS  PubMed Central  Google Scholar 

  63. Peltomaa, R., Barderas, R., Benito-Pena, E., and Moreno-Bondi, M.C., Anal. Bioanal. Chem., 2022, vol. 414, p. 193.

    Article  CAS  PubMed  Google Scholar 

  64. Tiller, K.E. and Tessier, P.M., Ann. Rev. Biomed. Eng., 2015, vol. 17, p. 191.

    Article  CAS  Google Scholar 

  65. Wang, P., Xue, T.X., Sheng, A.Z., Cheng, L.F., and Zhang, J., Crit. Rev. Anal. Chem., 2022, vol. 52, no. 1, p. 170.

    Article  CAS  PubMed  Google Scholar 

  66. Sadiki, A., Kercher, E.M., Lu, H., Lang, R.T., Spring, B.Q., and Zhou, Z.S., Photochem. Photobiol., 2020, vol. 96, no. 3, p. 596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bastos-Soares, E.A., Sousa, R.M.O., Gomez, A.F., Alfonso, J., Kayano, A.M., Zanchi, F.B., Funes-Huacca, M.E., Stabeli, R.G., Soares, A.M., Pereira, S.S., and Fernandes, C.F.C., Int. J. Biol. Macromol., 2020, vol. 165, p. 2244.

    Article  CAS  PubMed  Google Scholar 

  68. Bever, C.S., Dong, J.-X., Vasylieva, N., Barnych, B., Cui, Y.L., Xu, Z.L., Hammock, B.D., and Gee, S.J., Anal. Bioanal. Chem., 2016, vol. 408, no. 22, p. 5985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu, Z.L., Shen, Y.D., Beier, R.C., Yang, J.Y., Lei, H.T., Wang, H., and Sun, Y.M., Anal. Chim. Acta, 2009, vol. 647, p. 125.

    Article  CAS  PubMed  Google Scholar 

  70. Winzor, D.J., J. Mol. Recognit., 2011, vol. 24, no. 2, p. 139.

    Article  CAS  PubMed  Google Scholar 

  71. Dzantiev, B.B., Zherdev, A.V., and Yazynina, E.V., in Smart Polymers for Bioseparation and Bioprocessing, Mattiasson, B. and Galaev, I.Yu, Eds., New York: Taylor & Francis, 2002, p. 207.

    Google Scholar 

  72. Rocha-Santos, T.A.P., TrAC, Trends Anal. Chem., 2014, vol. 62, p. 28.

    Article  CAS  Google Scholar 

  73. Urusov, A.E., Petrakova, A.V., Zherdev, A.V., and Dzantiev, B.B., Nanotechnol. Russ., 2017, vol. 12, nos. 9–10, p. 471.

    Article  CAS  Google Scholar 

  74. Kuznetsova, L.A. and Coakley, W., Biosens. Bioelectron., 2007, vol. 22, no. 8, p. 1567.

    Article  CAS  PubMed  Google Scholar 

  75. Wiklund, M. and Hertz, H.M., Lab. Chip, 2006, vol. 6, no. 10, p. 1279.

    Article  CAS  PubMed  Google Scholar 

  76. Pacheco, M., Angel Lopez, M., Jurado-Sanchez, B., and Escarpa, A., Anal. Bioanal. Chem., 2019, vol. 411, no. 25, p. 6561.

    Article  CAS  PubMed  Google Scholar 

  77. Jurado-Sanchez, B., Biosensors, 2018, vol. 8, no. 3, 59.

    Article  CAS  PubMed Central  Google Scholar 

  78. Wang, J., Biosens. Bioelectron., 2016, vol. 76, p. 234.

    Article  CAS  PubMed  Google Scholar 

  79. Ye, H., Wang, Y., Xu, D.D., Liu, X.J., Liu, S.M., and Ma, X., Appl. Mater. Today, 2021, vol. 23, 101007.

    Article  Google Scholar 

  80. Al Mughairy, B. and Al-Lawati, H.A.J., TrACTrends Anal. Chem., 2020, vol. 124, 115802.

    Article  CAS  Google Scholar 

  81. Shi, Y.X., Ye, P., Yang, K.J., Meng, J., Guo, J.C., Pan, Z.X., Bayin, Q.G., and Zhao, W.H., J. Healthcare Eng., 2021, vol. 2021, 2959843.

    Google Scholar 

  82. Shi, Y.X., Ye, P., Yang, K.J., Meng, J., Guo, J.C., Pan, Z.X., Zhao, W.H., and Guo, J.H., Analyst, 2021, vol. 146, no. 19, p. 5800.

    Article  CAS  PubMed  Google Scholar 

  83. Lu, B., Smyth, M.R., and O’Kennedy, R., Analyst, 1996, vol. 121, no. 3, p. R29.

    Article  Google Scholar 

  84. Crivianu-Gaita, V. and Thompson, M., Biosens. Bioelectron., 2015, vol. 70, p. 167.

    Article  CAS  PubMed  Google Scholar 

  85. Iijima, M. and Kuroda, S., Biosens. Bioelectron., 2017, vol. 89, no. 2, p. 810.

    Article  CAS  PubMed  Google Scholar 

  86. Zhao, L., Sun, L., and Chu, X., TrACTrends Anal. Chem., 2009, vol. 28, no. 4, p. 404.

    Article  CAS  Google Scholar 

  87. Xiao, Q. and Xu, C., TrAC, Trends Anal. Chem., 2020, vol. 124, 115780.

    Article  CAS  Google Scholar 

  88. Gao, Y., Zhou, Y., and Chandrawati, R., ACS Appl. Nano Mater., 2020, vol. 3, no. 1, p. 1.

    Article  CAS  Google Scholar 

  89. Huang, Y., Xu, T.L., Wang, W.O., Wen, Y.Q., Li, K., Qian, L.S., Zhang, X.J., and Liu, G.D., Microchim. Acta, 2020, vol. 187, no. 1, 70.

    Article  CAS  Google Scholar 

  90. Quesada-Gonzalez, D. and Merkoci, A., Biosens. Bioelectron., 2015, vol. 73, p. 47.

    Article  CAS  PubMed  Google Scholar 

  91. Mohamad, A., Teo, H., Keasberry, N.A., and Ahmed, M.U., Crit. Rev. Biotechnol., 2019, vol. 39, no. 1, p. 50.

    Article  CAS  PubMed  Google Scholar 

  92. Welch, E.C., Powell, J.M., Clevinger, T.B., Fairman, A.E., and Shukla, A., Adv. Funct. Mater., 2021, vol. 31, no. 44, 2104126.

    Article  CAS  Google Scholar 

  93. Pirsaheb, M., Mohammadi, S., and Salimi, A., TrAC— Trends Anal. Chem., 2019, vol. 115, p. 83.

    Article  CAS  Google Scholar 

  94. Zherdev, A.V. and Dzantiev, B.B., in Rapid Test: Advances in Design, Format and Diagnostic Applications, Anfossi, L., Ed., London: InTechOpen, 2018, p. 9.

  95. Smolsky, J., Kaur, S., Hayashi, C., Batra, S.K., and Krasnoslobodtsev, A.V., Biosensors, 2017, vol. 7, no. 1, 7.

    Article  PubMed Central  CAS  Google Scholar 

  96. Wang, Z.Y., Zong, S.F., Wu, L., Zhu, D., and Cui, Y.P., Chem. Rev., 2017, vol. 117, no. 12, p. 7910.

    Article  CAS  PubMed  Google Scholar 

  97. Khlebtsov, B. and Khlebtsov, N., Nanomaterials, 2020, vol. 10, no. 11, 2228.

    Article  CAS  PubMed Central  Google Scholar 

  98. Wang, C., Liu, M., Wang, Z.F., Li, S., Deng, Y., and He, N.Y., Nano Today, 2021, vol. 37, 101092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, H., Das, A., Bi, L., Choi, N., Moon, J.I., Wu, Y., Park, S., and Choo, J., Nanoscale, 2020, vol. 12, no. 42, 21560.

    Article  CAS  PubMed  Google Scholar 

  100. Kavetskyy, T., Alipour, M., Smutok, O., Mushynska, O., Kiv, A., Fink, D., Farshchi, F., Ahmadian, E., and Hasanzadeh, M., Microchem. J., 2021, vol. 167, 106320.

    Article  CAS  Google Scholar 

  101. Gloag, L., Mehdipour, M., Chen, D.F., Tilley, R.D., and Gooding, J.J., Adv. Mater., 2019, vol. 31, no. 48, p. 4819.

    Article  CAS  Google Scholar 

  102. Qie, Z.W., Ning, B.A., Liu, M., Bai, J.L., Peng, Y., Song, N., Lv, Z.Q., Wang, Y., Sun, S.M., Su, X., Zhang, Y.H., and Gao, Z.X., Analyst, 2013, vol. 138, no. 17, p. 5151.

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, Y., Yang, H., Zhou, Z.G., Huang, K., Yang, S.P., and Han, G., Bioconjugate Chem., 2017, vol. 28, no. 4, p. 869.

    Article  CAS  Google Scholar 

  104. Stevens, K.G. and Pukala, T.L., TrACTrends Anal. Chem., 2020, vol. 132, 116064.

    Article  CAS  Google Scholar 

  105. Aranda, P.R., Messina, G.A., Bertolino, F.A., Pereira, S.V., Baldo, M.A.F., and Raba, J., Microchem. J., 2018, vol. 141, p. 308.

    Article  CAS  Google Scholar 

  106. Chang, X.-H., Zhang, J., Wu, L.-H., Peng, Y.K., Yang, X.Y., Li, X.L., Ma, A.J., Ma, J.C., and Chen, G.Q., Micromachines, 2019, vol. 10, no. 6, 422.

    Article  PubMed Central  Google Scholar 

  107. Gong, X.Q., Cai, J., Zhang, B., Zhao, Q., Piao, J.F., Peng, W.P., Gao, W.C., Zhou, D.M., Zhao, M., and Chang, J., J. Mater. Chem., 2017, vol. 5, no. 26, p. 5079.

    CAS  Google Scholar 

  108. Abramova, A.M., Goryacheva, O.A., Drozd, D.D., Novikova, A.S., Ponomareva, T.S., Strokin, P.D., and Goryacheva, I.Yu., J. Anal. Chem., 2021, vol. 76, no. 3, p. 273.

    Article  CAS  Google Scholar 

  109. Fenzl, C., Hirsch, T., and Baeumner, A.J., TrAC— Trends Anal. Chem., 2016, vol. 79, p. 306.

    Article  CAS  Google Scholar 

  110. Edwards, K.A., Bolduc, O.R., and Baeumner, A.J., Curr. Opin. Chem. Biol., 2012, vol. 16, nos. 3–4, p. 444.

    Article  CAS  PubMed  Google Scholar 

  111. Panferov, V.G., Safenkova, I.V., Zherdev, A.V., and Dzantiev, B.B., Appl. Biochem. Microbiol., 2021, vol. 57, no. 2, p. 143.

    Article  CAS  Google Scholar 

  112. Wang, Y.S., Jin, M.J., Chen, G., Cui, X.Y., Zhang, Y.D., Li, M.J., Liao, Y., Zhang, X.Y., Qin, G.X., Yan, F.Y., Abd, El-AtyA.M., and Wang, J., J. Adv. Res., 2019, vol. 20, p. 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. di Nardo, F., Chiarello, M., Cavalera, S., Baggiani, C., and Anfossi, L., Sensors, 2021, vol. 21, no. 15, 5185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang, H., Xu, W., and Zhou, Y., Microchim. Acta, 2019, vol. 186, no. 12, 859.

    Article  CAS  Google Scholar 

  115. Xiong, Y., Leng, Y.K., Li, X.M., Huang, X.L., and Xiong, Y.H., TrAC—Trends Anal. Chem., 2020, vol. 126, 115861.

    Article  CAS  Google Scholar 

  116. Calabria, D., Calabretta, M.M., Zangheri, M., Marchegiani, E., Trozzi, I., Guardigli, M., Michelini, E., Di Nardo, F., Anfossi, L., Baggiani, C., and Mirasoli, M., Sensors, 2021, vol. 21, no. 10, 3358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Niu, X.H., Cheng, N., Ruan, X.F., Du, D., and Lin, Y.H., J. Electrochem. Soc., 2019, vol. 167, no. 1, 037508.

    Article  Google Scholar 

  118. Wang, Q.Q., Wei, H., Zhang, Z.Q., Wang, E.K., and Dong, S.J., TrAC—Trends Anal. Chem., 2018, vol. 105, p. 218.

    Article  CAS  Google Scholar 

  119. Spengler, M., Adler, M., and Niemeyer, C.M., Analyst, 2015, vol. 140, no. 18, p. 6175.

    Article  CAS  PubMed  Google Scholar 

  120. Ryazantsev, D.Y., Voronina, D.V., and Zavriev, S.K., Biochemistry (Moscow), 2016, vol. 81, no. 13, p. 1754.

    Article  CAS  Google Scholar 

  121. Dahiya, B. and Mehta, P.K., Anal. Biochem., 2019, vol. 587, 113444.

    Article  CAS  PubMed  Google Scholar 

  122. Sang, P.T., Hu, Z.G., Cheng, Y.L., Yu, H., Xie, Y.F., Yao, W.R., Guo, Y.H., and Qian, H., J. Agric. Food Chem., 2021, vol. 69, no. 21, p. 5783.

    Article  CAS  PubMed  Google Scholar 

  123. Gooding, J.J. and Gaus, K.A., Angew. Chem., Int. Ed., 2016, vol. 55, no. 38, p. 11354.

    Article  CAS  Google Scholar 

  124. Wang, J.J., Yang, J., Ying, Y.L., and Long, Y.T., Chem.—Asian J., 2019, vol. 14, no. 3.

  125. Pleshakova, T.O., Bukharina, N.S., Archakov, A.I., and Ivanov, Y.D., Int. J. Mol. Sci., 2018, vol. 19, no. 4, 1142.

    Article  PubMed Central  CAS  Google Scholar 

  126. Li, M., Xi, N., Wang, Y., and Liu, L., Nano Res., 2019, vol. 12, no. 4, p. 703.

    Article  CAS  Google Scholar 

  127. Farka, Z., Mickert, M.J., Pastucha, M., Mikusova, Z., Skladal, P., and Gorris, H.H., Angew. Chem., Int. Ed., 2020, vol. 59, no. 27, p. 10746.

    Article  CAS  Google Scholar 

  128. Armstrong, R.E. and Horacek, M.Z., Small, 2020, vol. 16, no. 52, 2003934.

    Article  CAS  Google Scholar 

  129. Wu, Y., Bennett, D., Tilley, R.D., and Gooding, J.J., Adv. Mater., 2020, vol. 32, no. 18, 1904339.

    Article  CAS  Google Scholar 

  130. Macchia, E., Manoli, K., Di Franco, C., Scamarcio, G., and Torsi, L., Anal. Bioanal. Chem., 2020, vol. 412, p. 5005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was financially supported by the Russian Science Foundation (grant 19-14-00370). The authors are grateful to N.A. Taranova for preparing the illustrative material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Dzantiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zherdev, A.V., Dzantiev, B.B. Detection Limits of Immunoanalytical Systems: Limiting Factors and Methods of Reduction. J Anal Chem 77, 391–401 (2022). https://doi.org/10.1134/S1061934822040141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934822040141

Keywords:

Navigation