Skip to main content
Log in

Theoretical limitations of quantification for noncompetitive sandwich immunoassays

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Immunoassays exploit the highly selective interaction between antibodies and antigens to provide a vital method for biomolecule detection at low concentrations. Developers and practitioners of immunoassays have long known that non-specific binding often restricts immunoassay limits of quantification (LOQs). Aside from non-specific binding, most efforts by analytical chemists to reduce the LOQ for these techniques have focused on improving the signal amplification methods and minimizing the limitations of the detection system. However, with detection technology now capable of sensing single-fluorescence molecules, this approach is unlikely to lead to dramatic improvements in the future. Here, fundamental interactions based on the law of mass action are analytically connected to signal generation, replacing the four- and five-parameter fittings commercially used to approximate sigmoidal immunoassay curves and allowing quantitative consideration of non-specific binding and statistical limitations in order to understand the ultimate detection capabilities of immunoassays. The restrictions imposed on limits of quantification by instrumental noise, non-specific binding, and counting statistics are discussed based on equilibrium relations for a sandwich immunoassay. Understanding the maximal capabilities of immunoassays for each of these regimes can greatly assist in the development and evaluation of immunoassay platforms. While many studies suggest that single molecule detection is possible through immunoassay techniques, here, it is demonstrated that the fundamental limit of quantification (precision of 10 % or better) for an immunoassay is approximately 131 molecules and this limit is based on fundamental and unavoidable statistical limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LOD:

Limit of detection

NSB:

Non-specific binding

MSN:

Molecular shot noise

LOQ:

Limit of quantification

P4-P5:

Four- and five-parameter model

References

  1. Brown EN, McDermott TJ, Bloch KJ, McCollom AD (1996) Clin Chem 42:893–903

    CAS  Google Scholar 

  2. Ekins R, Kelso D (2011) Clin Chem 57:372–375

    Article  CAS  Google Scholar 

  3. Cook DB, Selt CH (1993) Clin Chem 39:965–971

    CAS  Google Scholar 

  4. Miles LEM, Hales CN (1968) Nature 219:186–189

    Article  CAS  Google Scholar 

  5. Ishikawa E, Hashida S, Kohno T, Hirota K (1990) Clin Chim Acta 194:51–72

    Article  CAS  Google Scholar 

  6. Ylander PJ, Hanninen P (2010) Biophys Chem 151:105–110

    Article  CAS  Google Scholar 

  7. Klenin KV, Kusnezow W, Langowski J (2005) J Chem Phys 122:214715-1–214715-11

    Article  Google Scholar 

  8. Rodbard D, Feldman Y (1978) Immunochemistry 15:71–76

    Article  CAS  Google Scholar 

  9. Sadana A, Chen Z (1996) Biosens Bioelectron 11:17–33

    Article  CAS  Google Scholar 

  10. Werthen M, Nygren H (1988) J Immunol Methods 115:71–78

    Article  CAS  Google Scholar 

  11. Nygren H, Werthen M, Stenberg M (1987) J Immunol Methods 101:63–71

    Article  CAS  Google Scholar 

  12. Nygren H, Stenberg M (1989) Immunology 66:321–327

    CAS  Google Scholar 

  13. Stenberg M, Nygren H (1985) J Theor Biol 113:589–597

    Article  CAS  Google Scholar 

  14. Stenberg M, Stiblert L, Nygren H (1986) J Theor Biol 120:129–140

    Article  CAS  Google Scholar 

  15. Beumer T, Haarbosch P, Carpay W (1996) Anal Chem 68:1375–1380

    Article  CAS  Google Scholar 

  16. Pesce AJ, Michael JG (1992) J Immunol Methods 150:111–119

    Article  CAS  Google Scholar 

  17. Stenberg M, Nygren H (1988) J Immunol Methods 113:3–15

    Article  CAS  Google Scholar 

  18. Rodbard D, Feldman Y, Jaffe ML, Miles LEM (1978) Immunochemistry 15:77–82

    Article  CAS  Google Scholar 

  19. Jackson TM, Ekins RP (1986) J Immunol Methods 87:13–20, T. R

    Article  CAS  Google Scholar 

  20. Glass N, Ohmura, Saiki H (2007) Anal Chem 79:1954–1960

    Article  CAS  Google Scholar 

  21. Seth J (1990) Clin Chem 36:178

    CAS  Google Scholar 

  22. Kalman SM, Clark DR, Moses LE (1984) Clin Chem 30:515–517

    CAS  Google Scholar 

  23. Currie LA (1968) Anal Chem 40:586–593

    Article  CAS  Google Scholar 

  24. Yalow RS, Berson SA (1959) Nature 184:1648–1649

    Article  CAS  Google Scholar 

  25. Hassibi A, Vikalo H, Hajimiri A (2007) J Appl Phys 102:014909-1–014909-12

    Article  Google Scholar 

  26. Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, Ferrell EP, Randall JD, Provuncher GK, Walt DR, Duffy DC (2010) Nat Biotechnol 28:595–599

    Article  CAS  Google Scholar 

  27. Tessler LA, Mitra RD (2011) Proteomics 11:4731–4735

    Article  CAS  Google Scholar 

  28. Schmidt R, Jacak J, Schirwitz C, Stadler V, Michel G, Marme N, Schutz GJ, Hoheisel JD, Knemeyer JP (2011) J Proteome Res 10:1316–1322

    Article  CAS  Google Scholar 

  29. Hashida S, Ishikawa E (1990) J Biochem 108:960–964

    CAS  Google Scholar 

  30. Ohmura N, Lackie SJ, Saiki H (2001) Anal Chem 73:3392–3399

    Article  CAS  Google Scholar 

  31. Chang L, Rissin DM, Fournier DR, Piech T, Patel PP, Wilson DH, Duffy DC (2012) J Immunol Methods 378:102–115

    Article  CAS  Google Scholar 

  32. Shalev A, Greenberg AH, McAlpine PJ (1980) J Immunol Meth 38:125–139

    Article  CAS  Google Scholar 

  33. Harris CC, Yolken RH, Krokan H, Hsu IC (1979) Proc Natl Acad Sci U S A 76:5336–5339

    Article  CAS  Google Scholar 

  34. Hungerford JM, Christian GD (1986) Anal Chem 58:2567–2568

    Article  CAS  Google Scholar 

  35. Diamandis EP, Christopoulos TK (1996) Immunoassay (theory of immunoassays CH 3) 25-49.

  36. Ezan E, Tiberghien C, Dray F (1991) Clin Chem 37:226–230

    CAS  Google Scholar 

  37. Yalow R (1961) Diabetes 10:339–344

    Article  CAS  Google Scholar 

  38. Ractliffe JF (1967) Elements of mathematical statistics (the normal distribution CH 7) 51-68

  39. Ewing GW (1968) Chemical instrumentation: XXXIX. Signal to noise optimization in chemistry. Chem Educ 45(7):A533–A544

    Article  Google Scholar 

  40. Johnson JB (1928) Thermal agitation of electricity in conductors. Phys Rev 32(1):97–109

    Article  CAS  Google Scholar 

  41. Nyquist H (1928) Thermal agitation of electric charge in conductors. Phys Rev 32(1):110–113

    Article  CAS  Google Scholar 

  42. Voet D, Voet JG, Pratt CW (2008) Fundamentals of Biochemistry (Antibodies Section 7.3) 209–215

  43. Guo Y, Harel O, Little RJ (2010) Epidemiology 21:S10–S16

    Article  Google Scholar 

  44. O’Malley AJ, Deely JJ (2003) Aust NZ J Stat 45:43–65

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (5R21EB010191-02) from the National Institutes of Health.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Hayes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woolley, C.F., Hayes, M.A., Mahanti, P. et al. Theoretical limitations of quantification for noncompetitive sandwich immunoassays. Anal Bioanal Chem 407, 8605–8615 (2015). https://doi.org/10.1007/s00216-015-9018-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9018-2

Keywords

Navigation