Skip to main content
Log in

Phytochemical Study of the Composition of the Unsaponifiable Fraction of Various Vegetable Oils by Gas Chromatography–Mass Spectrometry

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

We developed a method for quantitatively analyzing some components of the unsaponifiable fraction of edible oils and validated its characteristics. The component composition of the unsaponifiable fraction of 26 edible oil species was studied by gas chromatography/mass spectrometry. Squalene, sterols, and triterpene alcohols were quantified in oils using cholestenol as an internal standard. Some correlations were found between the structure of sterols and triterpene alcohols and their retention indices and electron impact fragmentation. More than 150 chemical compounds—unsaponifiable components—were identified. The method can be used to estimate the concentration of sterols, triterpene alcohols, and squalene in edible oils and determine the authenticity of oils by the characteristic profiles of the unsaponifiable fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kozlowska, M., Gruczynska, E., Scibisz, I., et al., Food Chem., 2016, vol. 213, p. 450.

    Article  CAS  Google Scholar 

  2. R (Guidelines) 4.1.1672-03: Guidelines for Quality Control and Safety of Dietary Supplements, Moscow, 2004.

  3. Metody analiza biologicheski aktivnikh veshestv pishi (Methods for the Analysis of Biologically Active Substances of Food), Tutel’yan, V.A. and Eller, K.I., Eds., Moscow: Dinastiya, 2010.

  4. Caligiani, A., Bonzanini, F., Palla, G., et al., Plant Foods Hum. Nutr., 2010, vol. 65, no. 3, p. 277.

    Article  CAS  Google Scholar 

  5. Phillips, K.M., Ruggio, D.M., and Ashraf-Khorassani, M., J. Agric. Food Chem., 2005, vol. 53, no. 24, p. 9436.

    Article  CAS  Google Scholar 

  6. Devyatlovskaya, A.N., Zhuravleva, L.N., and Alashkevich, Yu.D., Khim. Rastit. Sir’ya, 2014, no. 2, p. 195.

  7. Balagozyan, E.A., Kurkin, V.A., and Pravdivtseva, O.E., Khim. Rastit. Sir’ya, 2016, no. 2, p. 67.

  8. Flakelar, C.L., Prenzler, P.D., Luckett, D.J., et al., Food Chem., 2017, vol. 214, p. 147.

    Article  CAS  Google Scholar 

  9. Zarrouk, W., Carrasco-Pancorbo, A., Zarrouk, M., et al., Talanta, 2009, vol. 80, no. 2, p. 924.

    Article  CAS  Google Scholar 

  10. Fernandes, G.D., Porcari, A.M., Eberlin, M.N., et al., Food Chem., 2016, vol. 211, p. 661.

    Article  Google Scholar 

  11. Hailat, I. and Helleur, R.J., Rapid Commun. Mass Spectrom., 2014, vol. 28, no. 2, p. 149.

    Article  CAS  Google Scholar 

  12. Hatzakis, E., Dagounakis, G., Agiomyrgianaki, A., et al., Food Chem., 2010, vol. 122, no. 1, p. 346.

    Article  CAS  Google Scholar 

  13. Piironen, V., Lindsay, D.G., Miettinen, T.A., et al., J. Sci. Food Agric., 2000, vol. 80, no. 7, p. 939.

    Article  CAS  Google Scholar 

  14. Valitova, Yu.N., Sulkarnaeva, A.G., and Minibaeva, F.V., Biokhimiya, 2016, vol. 81, no. 8, p. 1050.

    Google Scholar 

  15. Gylling, H., Plat, J., Turley, S., et al., Atherosclerosis, 2014, vol. 232, no. 2, p. 346.

    Article  CAS  Google Scholar 

  16. Goryainov, S.V., Esparza, S., Borisova, A.R., et al., Mass-Spektrom., 2019, vol. 16, no. 4, p. 293.

    Google Scholar 

  17. Halket, J.M. and Zaikin, V.G., Eur. J. Mass Spectrom., 2003, vol. 9, no. 1, p. 1.

    Article  CAS  Google Scholar 

  18. Micera, M., Botto, A., Geddo, F., et al., Antioxidants, 2020, no. 9, p. 688.

  19. Semenov, V.V., Rusak, V.V., Chartov, E.M., et al., Russ. Chem. Bull., 2007, vol. 56, no. 12, p. 2448.

    Article  CAS  Google Scholar 

  20. Solati, Z., Baharin, B.S., and Bagheri, H., J. Am. Oil Chem. Soc., 2014, vol. 91, no. 2, p. 295.

    Article  CAS  Google Scholar 

  21. Chaudrary, S., Chaudrary, P.S., Chikara, S.K., et al., Not. Bot. Horti Agrobot. Cluj-Napoca, 2018, vol. 46, no. 1, p. 22.

    Article  Google Scholar 

  22. Wu, Y., Zhou, R., Wang, Z., et al., PLoS One, 2019, vol. 14, no. 3, e0212879.

    Article  CAS  Google Scholar 

  23. Li, T.S.C., Beveridge, T.H.J., and Drover, J.C.G., Food Chem., 2007, vol. 101, no. 4, p. 1633.

    Article  CAS  Google Scholar 

  24. Czaplicki, S., Ogrodowska, D., Derewiaka, D., et al., Eur. J. Lipid Sci. Technol., 2011, vol. 113, no. 12, p. 1456.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Center for Collective Use of the RUDN University and the Center for Collective Use “Analytical Center for the Problems of Deep Refining of Oil and Petrochemistry” of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Funding

The study was supported by the “RUDN University Program 5-100”. The analysis of coconut fruits, annual sunflower seeds, wheat germ, and sugar corn was supported within the State Assignment of the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work equally.

Corresponding author

Correspondence to S. V. Goriainov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goriainov, S.V., Esparza, C.A., Borisova, A.R. et al. Phytochemical Study of the Composition of the Unsaponifiable Fraction of Various Vegetable Oils by Gas Chromatography–Mass Spectrometry. J Anal Chem 76, 1635–1644 (2021). https://doi.org/10.1134/S1061934821140045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821140045

Keywords:

Navigation