Skip to main content
Log in

Fast coagulation of gold sols. the formation of interparticle contacts at early stages

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The fast coagulation of gold sols with concentrations of 46-nm particles equal to (0.8–30) × 1010 cm–3 initiated by an indifferent electrolyte has been studied by spectrophotometry. Variations arising in two absorption bands upon the formation of asymmetric clusters in the sols of plasmonic nanoparticles have been analyzed. Analysis of the kinetic data on variations in the high-energy mode, the intensity of which is governed by the contributions of both individual nanoparticles and their aggregates, has shown that, at early stages, the coagulation has the character of a bimolecular reaction. Extinction spectra of dimers, in which gold nanoparticles are located at different distances from each other, have been calculated with the use of the generalized Mie theory. A “plasmon ruler,” which represents the shift of the longitudinal plasmon resonance band of dimers relative to that of individual particles as depending on the distances between the surfaces of the particles in the dimer, has been constructed based on the calculated data. Using the plasmon ruler and experimental data, the distance between nanoparticles in dimers formed during coagulation has, for the first time, been determined. It has been found that, at the initial stages of gold sol fast coagulation, when the process develops as a bimolecular reaction, nanoparticles that have formed dimers are not in the direct contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Derjaguin, B.V. and Landau, L., Acta Physicochim. USSR, 1941, vol. 14, p. 633.

    Google Scholar 

  2. Verwey, E.J.W. and Overbeek, J.Th.G., Theory of the Stability of Lyophobic Colloids, New York: Elsevier, 1948.

    Google Scholar 

  3. Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Surface Forces, New York: Springer, 1987.

    Book  Google Scholar 

  4. Russel, W.B., Saville, D.A., and Schowalter, W.R., Colloidal Dispersions, Cambridge: Cambridge Univ. Press, 1989.

    Book  Google Scholar 

  5. Minor, M. and Van Leeuwen, H.P., in Fundamentals of Interface and Colloid Science, Lyklema, J., Ed., Amsterdam: Elsevier, 2005, vol. IV, Chap. IV.

  6. Weitz, D.A., Huang, J.S., Lin, M.Y., and Sung, J., Phys. Rev. Lett., 1985, vol. 54, p. 1416.

    Article  CAS  Google Scholar 

  7. Wong, K., Cabane, B., and Duplessix, R., J. Colloid Interface Sci., 1988, vol. 123, p. 466.

    Article  CAS  Google Scholar 

  8. Tirado-Miranda, M., Schmitt, A., Callejas-Fernandez, J., and Fernandez-Barbero, A., J. Chem. Phys., 2003, vol. 119, p. 9251.

    Article  CAS  Google Scholar 

  9. Frens, G. and Overbeek, J.Th.G., J. Colloid Interface Sci., 1972, vol. 38, p. 376.

    Article  CAS  Google Scholar 

  10. Frens, G., Faraday Discuss. Chem. Soc., 1978, vol. 65, p. 146.

    Article  CAS  Google Scholar 

  11. Swanton, S.W., Adv. Colloid Interface Sci., 1995, vol. 54, p. 129.

    Article  CAS  Google Scholar 

  12. Khlebtsov, N.G., Dykman, L.A., Krasnov, Ya.M., and Mel’nikov, A.G., Colloid J., 2000, vol. 62, p. 765.

    Article  CAS  Google Scholar 

  13. Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters, Berlin: Springer, 1995.

    Book  Google Scholar 

  14. Quinten, M., Optical Properties of Nanoparticle Systems, Singapore: Wiley-VCH, 2011.

    Book  Google Scholar 

  15. Xu, Y.-L., Appl. Opt., 1997, vol. 36, p. 4573.

    Google Scholar 

  16. Xu, Y.-L., Appl. Opt., 1997, vol. 36, p. 9496.

    Article  CAS  Google Scholar 

  17. Xu, Y.-L. and Wang, R.T., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1998, vol. 58, p. 3931.

    Article  CAS  Google Scholar 

  18. Xu, Y.-L. and Khlebtsov, N.G., J. Quant. Spectrosc. Radiat. Transfer, 2003, vols. 79–80, p. 1121.

    Article  Google Scholar 

  19. Mishchenko, M.I., Videen, G., Babenko, V.A., Khlebtsov, N.G., and Wriedt, Th., J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 88, p. 357.

    Article  CAS  Google Scholar 

  20. Marhaba, S., Bachelier, G., Bonnet, C., Broyer, M., Cottancin, E., Grillet, N., Lermel, J., Vialle, J.-L., and Pellarin, M., J. Phys. Chem. C, 2009, vol. 113, p. 4349.

    Article  CAS  Google Scholar 

  21. Frens, G., Nat. Phys. Sci., 1973, vol. 241, p. 20.

    Article  CAS  Google Scholar 

  22. Johnson, P.B. and Christy, R.W., Phys. Rev. B: Condens. Matter, 1972, vol. 6, p. 4370.

    Article  CAS  Google Scholar 

  23. Irani, G.B., Huen, T., and Wooten, F., J. Opt. Soc. Am., 1971, vol. 61, p. 128.

    Article  CAS  Google Scholar 

  24. Khlebtsov, N.G., Bogatyrev, V.A., Dykman, L.A., and Melnikov, A.G., J. Colloid Interface Sci., 1996, vol. 180, p. 436.

    Article  CAS  Google Scholar 

  25. Dolinnyi, A., J. Phys. Chem. C, 2015, vol. 119, p. 4990.

    Article  CAS  Google Scholar 

  26. Jain, P.K., Huang, W., and El-Sayed, M.A., Nano Lett., 2007, vol. 7, p. 2080.

    Article  CAS  Google Scholar 

  27. Jain, P.K. and El-Sayed, M.A., Chem. Phys. Lett., 2010, vol. 487, p. 153.

    Article  CAS  Google Scholar 

  28. Funston, A.M., Novo, C., Davis, T.J., and Mulvaney, P., Nano Lett., 2009, vol. 9, p. 1651.

    Article  CAS  Google Scholar 

  29. Khlebtsov, N.G. and Dykman, L.A., J. Quant. Spectrosc. Radiat. Transfer, 2010, vol. 111, p. 1.

    Article  CAS  Google Scholar 

  30. Shipway, A.N., Lahav, M., Gabai, R., and Willner, I., Langmuir, 2000, vol. 16, p. 8789.

    Article  CAS  Google Scholar 

  31. Wang, G. and Sun, W., J. Phys. Chem. B, 2006, vol. 110, p. 20901.

    Article  CAS  Google Scholar 

  32. Reinhard, B.M., Siu, M., Agarwal, H., Alivisatos, A.P., and Liphardt, J., Nano Lett., 2005, vol. 5, p. 2246.

    Article  CAS  Google Scholar 

  33. Goodman, S.L., Hodges, G.M., Trejdosiewicz, L.K., and Livingston, D.C., J. Microsc. (Oxford), 1981, vol. 123, p. 201.

    Article  CAS  Google Scholar 

  34. Brown, K.R., Walter, D.G., and Natan, M.J., Chem. Mater., 2000, vol. 12, p. 306.

    Article  CAS  Google Scholar 

  35. Jain, P.K. and El-Sayed, M.A., J. Phys. Chem. C, 2008, vol. 112, p. 4954.

    Article  CAS  Google Scholar 

  36. Tabor, C., Murali, R., Mahmoud, M., and El-Sayed, M.A., J. Phys. Chem. A, 2009, vol. 113, p. 1946.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dolinnyi.

Additional information

Original Russian Text © A.I. Dolinnyi, 2015, published in Kolloidnyi Zhurnal, 2015, Vol. 77, No. 5, pp. 611–618.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolinnyi, A.I. Fast coagulation of gold sols. the formation of interparticle contacts at early stages. Colloid J 77, 600–607 (2015). https://doi.org/10.1134/S1061933X15050051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X15050051

Keywords

Navigation