Skip to main content
Log in

An Electrooptical Method for Studying the Coagulation of Nanodisperse Systems: Formation of Aggregates of Graphite Particles in Aqueous Electrolytes

  • NANOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We demonstrate that the electrooptical method can be used to study the coagulation of liquid nanodisperse systems, in particular, colloids and suspensions. Two electrooptical effects have been used—one dependent and one independent of the polarization of light passing through the system in the electric field. The results of study of the coagulation kinetics at its early stage, associated with the formation of pair aggregates from graphite particles suspended in AlCl3 and Th(NO3)4 aqueous electrolytes are presented. We show that the systems are stable in a wide range of electrolyte concentrations and lose their stability in a narrow range in which the electrokinetic potential of particles does not exceed 5 mV. We show that the electrooptically determined dependences of the particle concentration on the coagulation time at the isoelectric point agree well with the Smoluchowski theory of rapid coagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge Univ. Press, Cambridge, 1989). https://doi.org/10.1017/CBO9780511608810

    Book  MATH  Google Scholar 

  2. M. Elimelech, J. Gregory, X. Jia, and R. A. Williams, Particle Deposition and Aggregation: Measurement, Modeling, and Simulation (Butterworth-Heinemann, Oxford, 1995). https://doi.org/10.1016/B978-0-7506-7024-1.X5000-6

    Book  Google Scholar 

  3. S. Xu and Z. Sun, Soft Matter 7, 11298 (2011). https://doi.org/10.1039/C1SM06237A

    Article  ADS  Google Scholar 

  4. X. Ntampou, A. I. Zouboulis, and P. Samaras, Chemosphere 62, 722 (2006). https://doi.org/10.1016/j.chemosphere.2005.04.067

    Article  ADS  Google Scholar 

  5. G. Trefalt, I. Szilagyi, and M. Borkovec, Measuring Particle Aggregation Rates by Light Scattering. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.722.7171&rep=rep1&type=pdf.

  6. H. Holthoff, S. U. Egelhaaf, M. Borkovec, P. Schurtenberger, and H. Sticher, Langmuir 12, 5541 (1996). https://doi.org/10.1021/la960326e

    Article  Google Scholar 

  7. H. Holthoff, A. Schmitt, A. Fernandez-Barbero, M. Borkovec, M. A. Cabrerizo-Vilchez, P. Schurtenberger, and R. Hidalgo-Alvarez, J. Colloid Interface Sci. 192, 463 (1997). https://doi.org/10.1006/jcis.1997.5022

    Article  ADS  Google Scholar 

  8. X. Li, K. Y. May, X. Ni, C. He, K. W. Leong, and J. Li, J. Phys. Chem. B 110, 5920 (2006). https://doi.org/10.1021/jp057004g

    Article  Google Scholar 

  9. V. A. Bloomfield, Biopolymers 54, 168 (2000). https://doi.org/10.1002/1097-0282(200009)54:3<168::AID-BIP20>3.0.CO;2-9

    Article  Google Scholar 

  10. V. V. Voitylov, A. A. Trusov, and A. A. Spartakov, Opt. Spectrosc. 44, 353 (1978).

    ADS  Google Scholar 

  11. S. A. Klemeshev, M. P. Petrov, A. A. Trusov, and A. V. Voitylov, J. Phys.: Condens. Matter 22, 494106 (2010). https://doi.org/10.1088/0953-8984/22/49/494106

    Article  Google Scholar 

  12. L. K. Babadzhanyants, A. V. Voitylov, V. V. Voitylov, and A. A. Trusov, Polym. Sci., Ser. C 52, 93 (2010). https://doi.org/10.1134/S181123821001011X

    Article  Google Scholar 

  13. H. Muller, J. Opt. Soc. Am. 31, 286 (1941). https://doi.org/10.1364/JOSA.31.000286

    Article  ADS  Google Scholar 

  14. V. N. Tsvetkov, Rigid Polymer Molecules (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  15. A. Garcia-Valenzuela, R. G. Barrera, C. Sanchez-Perez, A. Reyes-Coronado, and E. R. Mendez, Opt. Express 13, 6723 (2005). https://doi.org/10.1364/OPEX.13.006723

    Article  ADS  Google Scholar 

  16. E. V. Shpol’skii, Usp. Fiz. Nauk 27, 97 (1945). https://doi.org/10.3367/UFNr.0027.194501f.0096

    Article  Google Scholar 

  17. V. V. Vojtylov, M. P. Petrov, A. A. Spartakov, and A. A. Trusov, Opt. Spectrosc. 114, 630 (2013). https://doi.org/10.1134/S0030400X13030272

    Article  ADS  Google Scholar 

  18. N. A. Tolstoi and P. P. Feofilov, Dokl. Akad. Nauk SSSR 66, 617 (1949).

    Google Scholar 

  19. S. Stoylov, A. Sheludko, and R. Chernev, Godish. Sofisk. Univ., Khim. Fak. 58, 113 (1963–1964).

    Google Scholar 

  20. M. P. Petrov, V. V. Voitylov, S. A. Klemeshev, and A. A. Trusov, Opt. Spectrosc. 111, 832 (2011). https://doi.org/10.1134/S0030400X11090207

    Article  ADS  Google Scholar 

  21. P. Arenas-Guerrero, M. L. Jimenez, K. Scott, and K. J. Donovan, Carbon 126, 77 (2018). https://doi.org/10.1016/j.carbon.2017.10.001

    Article  Google Scholar 

  22. S. H. Hong, T. Z. Shen, and J. K. Song, J. Phys. Chem. C 118, 26304 (2014). https://doi.org/10.1021/jp504892s

    Article  Google Scholar 

  23. S. A. Klemeshev, M. P. Petrov, A. A. Trusov, and V. V. Vojtylov, Colloids Surf., A 400, 52 (2012). https://doi.org/10.1016/j.colsurfa.2012.02.045

    Article  Google Scholar 

  24. V. V. Voitylov, P. I. Ivashchenko, A. A. Trusov, and I. V. Altukhov, Opt. Spectrosc. 107, 717 (2009). https://doi.org/10.1134/S0030400X09110083

    Article  Google Scholar 

  25. E. Fredericq and C. Houssier, Electric Dichroism and Electric Birefringence (Clarendon, Oxford, 1973).

    Google Scholar 

  26. B. V. Deryagin, Theory of Stability of Colloids and Thin Films (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  27. E. J. W. Verwey, and J. Th. G. Overbeek, Theory of Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).

    Google Scholar 

  28. S. V. Karpov and P. N. Semina, Colloid J. 74, 295 (2012). https://doi.org/10.1134/S1061933X12030040

    Article  Google Scholar 

  29. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

    Google Scholar 

  30. F. Perrin, J. Phys. Rad. 5, 497 (1934). https://doi.org/10.1051/jphysrad:01934005010049700

    Article  Google Scholar 

  31. M. F. Vuks, Electrical and Optical Properties of Molecules and Condensed Matter (Leningr. Gos. Univ., Leningrad, 1984) [in Russian].

    Google Scholar 

  32. R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Springer, Berlin, 1985).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Petrov.

Additional information

Translated by V. Rogovoi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vezo, O.S., Voitylov, A.V., Voitylov, V.V. et al. An Electrooptical Method for Studying the Coagulation of Nanodisperse Systems: Formation of Aggregates of Graphite Particles in Aqueous Electrolytes. Opt. Spectrosc. 128, 719–728 (2020). https://doi.org/10.1134/S0030400X20060247

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20060247

Keywords:

Navigation