Skip to main content
Log in

Fast coagulation of gold sols. Rate constants for dimerization of nanoparticles

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

By using the generalized Mie theory, the extinction cross sections for dimers of 46-nm gold particles immersed in water have been calculated. It has been found that, in the region of high-energy plasmon resonance band, the maximum value of normalized extinction cross section Qext1 gradually decreases as particles approach each other. The greatest changes in Qext1 are observed when interparticle distance h decreases from 10 to 3 nm. At shorter distances, Qext1 weakly depends on h. At the same time, the band position varies in a complicated manner; however, at h < 2.5 nm, it coincides with that for individual particles. The revealed properties of the high-energy plasmon resonance band for dimers have been used to determine the absolute rate constant for dimerization of 46-nm gold particles k 11. By spectrophotometry, we have investigated salt-induced coagulation of gold sols and have measured the rates of the decrease in optical density. Experimental and calculation data allowed us to establish, at initial stages of fast coagulation, when the distance between the surfaces of 46-nm gold particles is 1.3–2.0 nm (Dolinnyi, A.I., Colloid J., 2015, vol.77, p. 600.), the average value of k 11 is (9.20 ± 1.34) × 10–12 cm3/s for sols with particle concentrations of (0.4–2.6) × 1010 cm–3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dolinnyi, A.I., Colloid J., 2015, vol. 77, p. 600.

    Article  CAS  Google Scholar 

  2. Quinten, M., Optical Properties of Nanoparticle Systems, Singapore: Wiley-VCH, 2011.

    Book  Google Scholar 

  3. Xu, Y.-L., Appl. Opt., 1995, vol. 34, p. 4573.

    Article  CAS  Google Scholar 

  4. Xu, Y.-L., Appl. Opt., 1997, vol. 36, p. 9496.

    Article  CAS  Google Scholar 

  5. Xu, Y.-L. and Khlebtsov, N.G., J. Quant. Spectrosc. Radiat. Transfer, 2003, vols. 79–80, p. 1121.

    Article  Google Scholar 

  6. Mishchenko, M.I., Videen, G., Babenko, V.A., Khlebtsov, N.G., and Wriedt, Th., J. Quant. Spectrosc. Radiat. Transfer, 2004, vol. 88, p. 357.

    Article  CAS  Google Scholar 

  7. Dolinnyi, A., J. Phys. Chem. C, 2015, vol. 119, p. 4990.

    Article  CAS  Google Scholar 

  8. Long, J.A., Osmond, D.W.J., and Vincent, B., J. Colloid Interface Sci., 1973, vol. 42, p. 545.

    Article  CAS  Google Scholar 

  9. Muller, V.M., Kolloidn. Zh., 1978, vol. 40, p. 885.

    CAS  Google Scholar 

  10. Frens, G., Faraday Discuss. Chem. Soc., 1978, vol. 65, p. 146.

    Article  CAS  Google Scholar 

  11. Molina-Bolivar, J.A., Galisteo-Gonzalez, F., and Hidalgo-Alvarez, R., J. Chem. Phys., 1999, vol. 110, p. 5412.

    Article  CAS  Google Scholar 

  12. Odriozola, G., Schmitt, A., Callejas-Fernandez, J., Martinez-Garcia, R., Leone, R., and HidalgoAlvarez, R., J. Phys. Chem. B, 2003, vol. 107, p. 2180.

    Article  CAS  Google Scholar 

  13. Lichtenbelt, J.W.Th., Ras, H.J.M.C., and Wiersema, P.H., J. Colloid Interface Sci., 1974, vol. 46, p. 522.

    Article  CAS  Google Scholar 

  14. Sun, Z., Liu, J., and Xu, S., Langmuir, 2006, vol. 22, p. 4946.

    Article  CAS  Google Scholar 

  15. Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.

    Google Scholar 

  16. Johnson, P.B. and Christy, R.W., Phys. Rev. B: Condens. Matter, 1972, vol. 6, p. 4370.

    Article  CAS  Google Scholar 

  17. Irani, G.B., Huen, T., and Wooten, F., J. Opt. Soc. Am., 1971, vol. 61, p. 128.

    Article  CAS  Google Scholar 

  18. Khlebtsov, N.G., Bogatyrev, V.A., Dykman, L.A., and Melnikov, A.G., J. Colloid Interface Sci., 1996, vol. 180, p. 436.

    Article  CAS  Google Scholar 

  19. Sonntag, H. and Strenge, K., Coagulation Kinetics and Structure Formation, Berlin: VEB Deutscher Verlag der Wissenschaften, 1987.

    Book  Google Scholar 

  20. Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Surface Forces, New York: Consultants Bureau, 1987.

    Book  Google Scholar 

  21. Zsigmondy, R., Z. Phys. Chem., 1918, vol. 92, p. 600.

    Google Scholar 

  22. Westgren, A. and Reistotter, J., Z. Phys. Chem., 1918, vol. 92, p. 750.

    CAS  Google Scholar 

  23. Tuorila, P., Kolloid Chem. Beihefte, 1926, vol. 22, p. 191.

    Article  CAS  Google Scholar 

  24. Tuorila, P., Kolloid Chem. Beihefte, 1927, vol. 24, p. 3.

    Google Scholar 

  25. Derjaguin, B.V. and Kudryavtseva, N.M., Kolloidn. Zh., 1964, vol. 26, p. 61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dolinnyi.

Additional information

Original Russian Text © A.I. Dolinnyi, 2016, published in Kolloidnyi Zhurnal, 2016, Vol. 78, No. 1, pp. 49–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolinnyi, A.I. Fast coagulation of gold sols. Rate constants for dimerization of nanoparticles. Colloid J 78, 65–69 (2016). https://doi.org/10.1134/S1061933X16010063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X16010063

Keywords

Navigation