Skip to main content
Log in

A general fractional differential equation associated with an integral operator with the H-function in the kernel

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we introduce and investigate a fractional integral operator which contains Fox’s H-function in its kernel. We find solutions to some fractional differential equations by using this operator. The results derived in this paper generalize the results obtained in earlier works by Kilbas et al. [7] and Srivastava and Tomovski [23]. A number of corollaries and consequences of the main results are also considered. Using some of these corollaries, graphical illustrations are presented and it is found that the graphs given here are quite comparable to the physical phenomena of decay processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz, and I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables(Applied Mathematics Series 55, National Bureau of Standards, Washington, D.C., 1964; Reprinted by Dover Publications, New York, 1965 (see also [10])).

    MATH  Google Scholar 

  2. R. G. Buschman, and H. M. Srivastava, “The H Function Associated with a Certain Class of Feynman Integrals,” J. Phys. A: Math. Gen. 23, 4707–4710 (1990).

    Article  ADS  MATH  Google Scholar 

  3. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953).

    Google Scholar 

  4. R. Gorenflo, F. Mainardi, and H. M. Srivastava, “Special Functions in Fractional Relaxation-Oscillation and Fractional Diffusion-Wave Phenomena,” Proceedings of the Eighth International Colloquium on Differential Equations (Plovdiv, Bulgaria; August 18–23 (1997) (D. Bainov, Editor), VSP Publishers, Utrecht and Tokyo, 195–202 (1998).

    Google Scholar 

  5. R. Hilfer (Editor), Applications of Fractional Calculus in Physics (World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 2000).

    MATH  Google Scholar 

  6. A. A. Inayat-Hussain, “New Properties of Hypergeometric Series Derivable from Feynman Integrals. II: A Generalisations of the H-Function,” J. Phys. A: Math. Gen. 20, 119–128 (1987).

    Google Scholar 

  7. A. A. Kilbas, M. Saigo, and R. K. Saxena, “Generalized Mittag-Leffler Function and Generalized Fractional Calculus Operators,” Integral Transforms Spec. Funct. 15, 31–49 (2014).

    Article  MathSciNet  Google Scholar 

  8. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (North-Holland Mathematical Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006).

    Book  MATH  Google Scholar 

  9. K. S. Miller, and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (A Wiley-Interscience Publication, John Wiley and Sons, New York, Chichester, Brisbane, Toronto and Singapore, 1993).

    MATH  Google Scholar 

  10. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Editors), NIST Handbook of Mathematical Functions ([With 1 CD-ROM (Windows, Macintosh and UNIX)], U. S. Department of Commerce, National Institute of Standards and Technology, Washington, D. C., 2010; Cambridge University Press, Cambridge, London and New York, 2010 (see also [1])).

    MATH  Google Scholar 

  11. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, Reading, Tokyo, Paris, Berlin and Langhorne (Pennsylvania), 1993).

    MATH  Google Scholar 

  12. H. M. Srivastava, “Some Formulas for the Bernoulli and Euler Polynomials at Rational Arguments,” Math. Proc. Cambridge Philos. Soc. 129, 77–84 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. H. M. Srivastava, “Some Generalizations and Basic (or q-) Extensions of the Bernoulli, Euler and Genocchi Polynomials,” Appl. Math. Inform. Sci. 5, 390–444 (2011).

    Google Scholar 

  14. H. M. Srivastava, “Generating Relations and Other Results Associated with Some Families of the Extended Hurwitz-Lerch Zeta Functions,” SpringerPlus 2, Article ID 2:67, 1–14 (2013).

    Article  Google Scholar 

  15. H. M. Srivastava, “A New Family of the λ-Generalized Hurwitz-Lerch Zeta Functions with Applications,” Appl. Math. Inform. Sci. 8, 1485–1500 (2014).

    Article  Google Scholar 

  16. H. M. Srivastava, and J. Choi, Series Associated with the Zeta and Related Functions (Kluwer Academic Publishers, Dordrecht, Boston and London, 2001).

    Book  MATH  Google Scholar 

  17. H. M. Srivastava, and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals (Elsevier Science Publishers, Amsterdam, London and New York, 2012).

    MATH  Google Scholar 

  18. H. M. Srivastava, D. Jankov, T. K. Pogány, and R. K. Saxena, “Two-Sided Inequalities for the Extended Hurwitz-Lerch Zeta Function,” Comput. Math. Appl. 62, 516–522 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  19. H. M. Srivastava, K. C. Gupta, and S. P. Goyal, The H-Functions of One and Two Variables with Applications (South Asian Publishers, New Delhi and Madras, 1982).

    MATH  Google Scholar 

  20. H. M. Srivastava, S.-D. Lin, and P.-Y. Wang, “Some Fractional-Calculus Results for the H-Function Associated with a Class of Feynman Integrals,” Russian J. Math. Phys. 13, 94–100 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. H. M. Srivastava, and R. K. Saxena, “Operators of Fractional Integration and Their Applications,” Appl. Math. Comput. 118, 1–52 (2011).

    Article  MathSciNet  Google Scholar 

  22. H. M. Srivastava, R. K. Saxena, T. K. Pogány, and R. Saxena, “Integral and Computational Representations of the Extended Hurwitz-Lerch Zeta Function,” Integral Transforms Spec. Funct. 22, 487–506 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  23. H. M. Srivastava, and Ž. Tomovski, “Fractional Calculus with an Integral Operator Containing a Generalized Mittag-Leffler Function in the Kernel,” Appl. Math. Comput. 211, 198–210 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  24. Ž. Tomovski, R. Hilfer, and H. M. Srivastava, “Fractional and Operational Calculus with Generalized Fractional Derivative Operators and Mittag-Leffler Type Functions,” Integral Transforms Spec. Funct. 21, 797–814 (2010).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, H.M., Harjule, P. & Jain, R. A general fractional differential equation associated with an integral operator with the H-function in the kernel. Russ. J. Math. Phys. 22, 112–126 (2015). https://doi.org/10.1134/S1061920815010124

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920815010124

Keywords

Navigation