Skip to main content
Log in

Estimation of Thermal Conductivity of Thermal Barrier Coatings through Measured Electronic and Structural Characteristics

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

For thin films, by reason of their specific nature, the determination of many properties intrinsic to compact materials is a well-known problem. This is particularly the case with one of the most important functional properties of thermal barrier coatings, namely, thermal conductivity. Therefore, the problem addressed in the present work is to develop the method of estimation of thermal conductivity of relatively thin coatings (up to 200 μm) through characteristics that can be easily measured in the experiment. This method includes the experimental measurement of the Volta potential difference of coatings and calculations of their thermal conductivity through the actual elemental and phase composition, which is determined by instrumental methods of metallography, X-ray diffraction, and spectroscopy. The investigation is performed on Nb-Ti-Al- and Zr-Ti-Al-based thermal barrier coatings about 80 μm in thickness deposited by the vacuum ion-plasma technology on a substrate made of nickel superalloy Inconel 713LC, which is used in the manufacture of first-stage blades of aircraft, locomotive and ship gas turbine engines. Despite the close chemical composition, the coatings have fundamentally different structures and phase compositions after long-term deposition and subsequent heat treatment. Structural features of the coatings affect the Volta potential difference measured by the original method. The developed calculation and analytical model for thermal conductivity also accounts for structural characteristics. Thermal conductivity values calculated by the presented model are highly correlated with the experimentally measured values of the Volta potential difference for single-phase alloys (Inconel 713LC) and single-phase layered coatings (Nb-Ti-Al). For multiphase coatings with a 3D composite structure (Zr-Ti-Al), the model shows insufficient correlation between the calculated and experimental values and needs to be corrected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Sourmail, T., Coatings for Turbine Blades, Cambridge, 2003. URL: Coatings for Turbine Blades (cam.ac.uk)

  2. Kablov, E.N. and Muboyadzhyan, S.A., Heat-Resistant and Thermal Barrier Coatings for High-Pressure Turbine Blades of Promising Gas Turbine Engines, Aviats. Mat. Tekh., 2012, no. 5, pp. 60–70. eLIBRARY ID: 18084820

    Google Scholar 

  3. Luo, Q., Zhou, Z., Rainforth, W.M., and Bolton, M., Effect of Tribofilm Formation on the Dry Sliding Friction and Wear Properties of Magnetron Sputtered Tialcryn Coatings, Tribology Lett., 2009, vol. 34, pp. 113–124. https://doi.org/10.1007/s11249-009-9415-9

  4. Luo, Q., Hovsepian, P.E., Lewis, D.B., Munz, W.D., Kok, Y.N., Cockrem, J., Bolton, M., and Farinotti, A., Tribological Properties of Unbalanced Magnetron Sputtered Nano-scale Multilayer Coatings TiAlN/VN and TiAlCrYN Deposited on Plasma Nitrided Steels, Surf. Coat. Technol., 2004, vol. 193(1–3), pp. 39–45. http://shura.shu.ac.uk/1133/

    Article  Google Scholar 

  5. Evans, A.G., Mumm, D., Hutchinson, J.W., Meier, G., and Pettit, F., Mechanisms that Control the Durability of Thermal Barrier Coatings, Adv. Mater. Sci., 2001, vol. 46, pp. 505–553. https://doi.org/10.1016/S0079-6425(00)00020-7

    Article  Google Scholar 

  6. Zhigachev, A.O., Golovin, Yu.I., Umrikhin, A.V., Korenkov, V.V., Tyurin, A.I., Rodaev, V.V., Dyachek, T.A., and Farber, B.Ya., High-Tech Nanostructured Ceramics Based on Zirconium Dioxide, Golovin, Yu.I., Ed., Moscow: Tekhnosfera, 2020.

  7. Padture, N.P., Gell, M., and Jordan, E.H., Thermal Barrier Coatings for Gas Turbine Engine Applications, Science, 2002, vol. 296, pp. 280–284. https://doi.org/10.1126/science.1068609

    Article  ADS  Google Scholar 

  8. Kim, G.M., Yanar, N.M., Hewitt, E.N., and Pettit, F., Influence of the Type of Thermal Exposure on the Durability of Thermal Barrier Coating, Scripta Mater., 2002, vol. 46, pp. 489–495. https://doi.org/10.1016/S1359-6462(02)00016-7

    Article  Google Scholar 

  9. Schulz, U., Some Recent Trends in Research and Technology for Advanced Thermal Barrier Coatings, Aero. Sci. Tech., 2003, vol. 7, pp. 73–80. https://doi.org/10.1016/S1270-9638(02)00003-2

    Article  Google Scholar 

  10. Tushinskii, L.I., Plokhov, A.V., Tokarev, A.O., and Sindeev, V.I., Methods of Material Research. Structure, Properties, and Deposition of Inorganic Coatings, Moscow: Mir, 2004.

  11. GOST 7076-99: Building Materials and Products. Method of Determination of Steady-State Thermal Conductivity and Thermal Resistance.

  12. Kudinov, V.V. and Ivanov, V.M., Plasma Deposition of Refractory Coatings, Moscow: Mashinostroenie, 1981.

  13. GOST 30256-94: Building materials and products. Method of Thermal Conductivity Determination by Cylindrical Probe.

  14. Buzovkina, T.B., Sokolova, T.V., Obukhov, A.P., Uspenskaya, R.I., and Degen, M.G., Effect of Structural Parameters and of Temperature on the Effective Thermal Conductivity of Plasma-Deposited Coatings of Aluminum Oxide, High Temp., 1972, vol. 10, no. 2, pp. 345–348.

    Google Scholar 

  15. Mazilin, I.V., Baldaev, L.Kh., Drobot, D.V., Akhmetgareeva, A.M., Zhukov, A.O., and Khismatullin, A.G., Thermal and Thermophysical Properties of Thermal Barrier Coatings Based on Lanthanum Zirconate, Perspekt. Mat., 2013, no. 7, pp. 21–30.

    Google Scholar 

  16. Parker, W.J., Jenkins, R.J., Butler, C.P., and Abbott, G.L., Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity, J. Appl. Phys., 1991, vol. 32, pp. 1679–1684. https://doi.org/10.1063/1.1728417

    Article  ADS  Google Scholar 

  17. Nicholls, R., Lawson, K.J., Johnston, A., and Rickerby, D.S., Low Thermal Conductivity EB-PVD Thermal Barrier Coatings, in High Temperature Corrosion. Trans. Tech. Publ., 2001, pp. 595–606. https://doi.org/10.4028/www.scientific.net/MSF.369-372.595

  18. Altun, O., Erhan Boke, Y., and Kalemtas, A., Problems for Determining the Thermal Conductivity of TBCs by Laser-Flash Method, J. Achiev. Mater. Manuf. Eng., 2008, vol. 30, no. 2, pp. 115–120.

    Google Scholar 

  19. Hemberger, F., Gobel, A., and Ebert, H.P., Determination of the Thermal Diffusivity of Electrically Non-Conductive Solids in the Temperature Range from 80 K to 300 R by Laser Flash Measurement, Int. J. Thermophys., 2010, vol. 31, pp. 2187–2200. https://doi.org/10.1007/s10765-010-0876-8

    Article  ADS  Google Scholar 

  20. Loshchinin, Yu.V., Folomeikin, Yu.I., and Pakhomkin, S.I., Study of the Heat Capacity of Coated Metal Materials by Laser Flash Method, Zavod. Lab. Diagn. Mat., 2015, vol. 81, no. 9, pp. 40–44. eLIBRARY ID: 24347011

    Google Scholar 

  21. Loshchinin, Yu.V., Budinovskii, S.A., and Razmakhov, M.G., Thermal Conductivity of Rare Earth Oxide Doped Thermal Barrier Coatings ZrO2–Y2O3 Deposited by Magnetron Sputtering, Aviats. Mat. Tekh., 2018, vol. 53, no. 3, pp. 21–49. https://doi.org/10.18577/2071-9140-2018-0-3-42-49

    Article  Google Scholar 

  22. ASTM E1461. Standard Test Method for Thermal Diffusivity by the Flash Method. ASTM Standards, American Society for Testing and Materials-Philadelphia, 2002.

  23. Gulyaev, A.P., Science of Metals, Moscow: Metallurgiya, 1986.

  24. Engineering Properties of Alloy 713C, pp. 4–5. https://nickelinstitute.org/media/2487/alloys-713c_337.pdf

  25. Kittel, Ch., Introduction to Solid State Physics, Hoboken, USA: John Wiley & Sons, 2005.

  26. Banerjee, D.A., A New Ordered Orthorhombic Phase in Ti3Al-Nb Alloy, Acta Metall., 1988, vol. 36, pp. 871–872. https://doi.org/10.1016/0001-6160(88)90141-1

    Article  Google Scholar 

  27. Chaumat, V., Ressouche, E., Ouladdiaf, В., Desre, P., and Moret, F., Experimental Study of Phase Equilibria in the Nb-Ti-Al System, Scripta Mater., 1999, vol. 40(8), pp. 905–911. https://doi.org/10.1016/S1359-6462(99)00032-9

    Article  Google Scholar 

  28. Polkin, I.S., Kolachev, B.A., and Ilyin, A.A., Titanium Aluminides and Alloys on Their Basis, Tekhn. Legk. Spl., 1999, no. 3, pp. 32–39.

    Google Scholar 

  29. Peng, J.H., Mao, Y., Li, S.Q., and Sun, X.F., Microstructure Controlling by Heat Treatment and Complex Processing for Ti2AlNb Based Alloys, Mater. Sci. Eng. A, 2001, vol. 209, pp. 75–80. https://doi.org/10.1016/S0921-5093(00)01417-9

    Article  Google Scholar 

  30. Raghavan, V., Al-Nb-Ti (Aluminum–Niobium–Titanium), J. Phase Equilib. Diffus., 2005, vol. 26(4), pp. 360–368. https://doi.org/10.1361/154770305X56863

    Article  Google Scholar 

  31. Kazantseva, N.V. and Lepikhin, S.V., Investigation of the Ti-Al-Nb Phase Diagram, PMM, 2006, vol. 102, no. 2, pp. 169–180.

    ADS  Google Scholar 

  32. Kahrobaee, Z. and Palm, M., Critical Assessment of the Al-Ti-Zr System, J. Phase Equilib. Diffus., 2020, vol. 41, pp. 687–701. https://doi.org/10.1007/s11669-020-00837-x

    Article  Google Scholar 

  33. Lu, K.L., Yang, F., Xie, Z.Y., Liu, H.S., Cai, G.M., and Jin, Z.P., Isothermal Section of Al-Ti-Zr Ternary System at 1073 K, Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 3052–3058. https://doi.org/10.1016/S1003-6326(16)64436-9

    Article  Google Scholar 

  34. URL: www.himikatus.ru

  35. Pchelintsev, A.N. and Shishin, V.A., Relaxation Time of Conduction Electrons in Metals, Vest. Tambov. Gos. Tekh. Univ., 2003, vol. 9, no. 3, pp. 464–468. eLIBRARYID: 18867465

    Google Scholar 

  36. Zarubin, V.S., Kuvyrkin, G.N., and Savelyeva, I.Yu., Thermal Conductivity of Fiber-Reinforced Composite, Izv. Vuzov. Mashinostr., 2013, no. 5, pp. 75–81. https://doi.org/10.18698/0536-1044-2013-5-75-81

    Article  Google Scholar 

  37. Zarubin, V.S., Kuvyrkin, G.N., and Savelyeva, I.Yu., The Self-Consistency Scheme Estimation of Effective Thermal Conductivity for the Transversally Isotropic Composite with Isotropic Ellipsoidal Inclusions, Vest. Mosk. Gos. Tekh. Univ. Bauman. Estest. Nauki., 2015, vol. 60, no. 3, pp. 99–109. https://doi.org/10.18698/1812-3368-2015-3-99-109

    Article  Google Scholar 

  38. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford, Great Britain: Oxford University Press, 1959.

  39. SAE AMS5391G-2013 Nickel Alloy, Corrosion and Heat Resistant. Standard by SAE International.

Download references

Funding

This work was supported by the Russian Science Foundation (grant No. 21-79-30007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kudryakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, V.I., Kudryakov, O.V., Varavka, V.N. et al. Estimation of Thermal Conductivity of Thermal Barrier Coatings through Measured Electronic and Structural Characteristics. Phys Mesomech 25, 195–213 (2022). https://doi.org/10.1134/S1029959922030018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922030018

Keywords:

Navigation