Skip to main content
Log in

Quantitative Analysis of the Relationship Between Microstructures and Thermal Conductivity for YSZ Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The thermal conductivities of as-sprayed yttria-stabilized zirconia thermal barrier coating prepared by atmospheric plasma spraying at different temperatures are investigated based on quantitative microstructural analysis. Multiple linear regression is used to develop quantitative models which describe the relationship between multiple elements such as porosity, grain boundary density, monoclinic phase content, temperature and thermal conductivity. Results reveal that the thermal conductivity of the coating is mainly determined by the porosity and grain boundary density below 300 °C and by the monoclinic phase content above 800 °C. Furthermore, based on the significance testing analysis, the confidence interval under a confidence level of 95% at different temperatures enables researchers to predict the thermal conductivity based on microstructural information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Belmonte, Advanced Ceramic Materials for High Temperature Applications, Adv. Eng. Mater., 2006, 8(8), p 693-703

    Article  Google Scholar 

  2. N.P. Padture, M. Gell, and E.H. Jordan, Applications Thermal Barrier Coatings for Gas—Turbine Engine, Science, 2002, 296(5566), p 280-284

    Article  Google Scholar 

  3. C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8(1), p 77-91

    Article  Google Scholar 

  4. S. Guo and Y. Kagawa, Isothermal and Cycle Properties of EB-PVD Yttria-Partially-Stabilized Zirconia Thermal Barrier Coatings at 1150 and 1300 C, Ceram. Int., 2007, 33(3), p 373-378

    Article  Google Scholar 

  5. R. Rajendran, Gas Turbine Coatings—An Overview, Eng. Fail. Anal., 2012, 26, p 355-369

    Article  Google Scholar 

  6. P.K. Wright and A.G. Evans, Mechanisms Governing the Performance of Thermal Barrier Coatings, Curr. Opin. Solid State Mater. Sci., 1999, 4(3), p 255-265

    Article  Google Scholar 

  7. Z. Wang, A. Kulkarni, S. Deshpande, and T. Nakamura, Effects of Pores and Interfaces on Effective Properties of Plasma Sprayed Zirconia Coatings, Acta Mater., 2003, 51(18), p 5319-5334

    Article  Google Scholar 

  8. W. Chi, S. Sampath, and H. Wang, Microstructure-Thermal Conductivity Relationships for Plasma-Sprayed Yttria-Stabilized Zirconia Coatings, J. Am. Ceram. Soc., 2008, 91(8), p 2636-2645

    Article  Google Scholar 

  9. L. Hu, C.A. Wang, Z. Hu, S. Lu, C. Sun, and Y. Huang, Porous Yttria-Stabilized Zirconia Ceramics with Ultra-Low Thermal Conductivity. Part II: Temperature Dependence of Thermophysical Properties, Surf Coat Technol, 2011, 46(3), p 623-628

    Google Scholar 

  10. A. Kocjan and Z. Shen, Colloidal Processing and Partial Sintering of High-Performance Porous Zirconia Nanoceramics with Hierarchical Heterogeneities, J. Eur. Ceram. Soc., 2013, 33(15), p 3165-3176

    Article  Google Scholar 

  11. F. Cernuschi, I.O. Golosnoy, P. Bison, A. Moscatelli, R. Vassen, H.P. Bossmann, and S. Capelli, Microstructural Characterization of Porous Thermal Barrier Coatings by IR Gas Porosimetry and Sintering Forecasts, Acta Mater., 2013, 61(1), p 248-262

    Article  Google Scholar 

  12. H. Xie, Y.C. Xie, G.J. Yang, C.X. Li, and C.J. Li, Intrasplat Cracks, J. Therm. Spray Technol., 2013, 22(8), p 1328-1336

    Article  Google Scholar 

  13. S. Wei, W. Fu-chi, F. Qun-Bo, and M. Zhuang, Effects of Defects on the Effective Thermal Conductivity of Thermal Barrier Coatings, Appl. Math. Model., 2012, 36(5), p 1995-2002

    Article  Google Scholar 

  14. G. Bertrand, P. Bertrand, P. Roy, R. Catherine, and M. Rémy, Low Conductivity Plasma Sprayed Thermal Barrier Coating Using Hollow PSZ Spheres: Correlation Between Thermophysical Properties and Microstructure, Surf. Coat. Technol., 2008, 202(10), p 1994-2001

    Article  Google Scholar 

  15. F. Cernuschi, P. Bianchi, M. Leoni, and P. Scardi, Thermal Diffusivity/Microstructure Relationship in Y-PSZ Thermal Barrier Coatings, J. Therm. Spray Technol., 1999, 8(1), p 102-109

    Article  Google Scholar 

  16. B.K. Jang, J.G. Sun, S.W. Kim, Y.S. Oh, and H.T. Kim, Characterization of the Thermal Conductivity of EB-PVD ZrO2-Y2O3 Coatings with a Pulsed Thermal Imaging Method, Surf. Coat. Technol., 2012, 207, p 177-181

    Article  Google Scholar 

  17. R. Kicsiny, Multiple Linear Regression Based Model for Solar Collectors, Sol. Energy, 2014, 110, p 496-506

    Article  Google Scholar 

  18. C.Y. Lee, M.K. Tippett, S.J. Camargo et al., Probabilistic Multiple Linear Regression Modeling for Tropical Cyclone Intensity, Mon. Weather Rev., 2015, 143(3), p 933-954

    Article  Google Scholar 

  19. E. Pourbasheer, R. Aalizadeh, and M.R. Ganjali, QSAR Study of mGlu5 Inhibitors by Genetic Algorithm-Multiple Linear Regressions, Med. Chem. Res., 2014, 23(6), p 3082-3091

    Article  Google Scholar 

  20. R.E. Taylor, Thermal Conductivity Determinations of Thermal Barrier Coatings, Mater. Sci. Eng. A, 1998, 245(2), p 160-167

    Article  Google Scholar 

  21. B. Forsthuber, U. Müller, A. Teischinger, and G. Grüll, Chemical and Mechanical Changes During Photooxidation of an Acrylic Clear Wood Coat and its Prevention Using UV Absorber and Micronized TiO2, Ploym. Degrad. Stab., 2013, 98(7), p 1329-1338

    Article  Google Scholar 

  22. C. Kramer, C.S. Tautermann, D.J. Livingstone, D.W. Salt, D.C. Whitley, B. Beck, and T. Clark, Sharpening the Toolbox of Computational Chemistry: A New Approximation of Critical F-Values for Multiple Linear Regression, J. Therm. Spray Technol., 2008, 49(1), p 28-34

    Google Scholar 

  23. R.W. Trice, Y.J. Su, J.R. Mawdsley, K.T. Faber, A.R. De Arellano-López, H. Wang, and W.D. Porter, Effect of Heat Treatment on Phase Stability, Microstructure, and Thermal Conductivity of Plasma-Sprayed YSZ, J. Mater. Sci., 2002, 37(11), p 2359-2365

    Article  Google Scholar 

  24. S. Krämer, S. Faulhaber, M. Chambers, D.R. Clarke, C.G. Levi, J.W. Hutchinson, and A.G. Evans, Mechanisms of Cracking and Delamination Within Thick Thermal Barrier Systems in Aero-Engines Subject to Calcium-Magnesium-Alumino-Silicate (CMAS) penetration, Mater. Sci. Eng. A, 2008, 490(1), p 26-35

    Article  Google Scholar 

  25. J. Wang, Y. Zhou, X.Y. Chong, R. Zhou, and J. Feng, Microstructure and Thermal Properties of a Promising Thermal Barrier Coating: YTaO4, Ceram. Int., 2016, 42(12), p 13876-13881

    Article  Google Scholar 

  26. Z. Tian, L. Zheng, J. Wang, P. Wan, J. Li, and J. Wang, Theoretical and Experimental Determination of the Major Thermo-Mechanical Properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for Environmental and Thermal Barrier Coating Applications, J. Eur. Ceram. Soc., 2016, 36(1), p 189-202

    Article  Google Scholar 

Download references

Acknowledgments

Financial support is provided by the National Key Technologies R&D Program of China (2016YFA0201103), Engineering case study in extreme conditions using system mechanics approach (XDB22010202), Shanghai Technical Platform for Testing and Characterization on Inorganic Materials (14DZ2292900) and Key Research Program of Frontier Science, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Song, X., Liu, Z. et al. Quantitative Analysis of the Relationship Between Microstructures and Thermal Conductivity for YSZ Coatings. J Therm Spray Tech 26, 745–754 (2017). https://doi.org/10.1007/s11666-017-0542-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0542-9

Keywords

Navigation