Skip to main content
Log in

Atomistic simulations of carbon effect on kink-pair energetics of bcc iron screw dislocations

  • Computation and theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties of body-centered cubic metals at low temperatures are strongly influenced by the solute atoms, which could be relatively complex as either hardening or softening effects would be introduced depending on the solute concentration and temperature. One major impact is that solute atoms can affect both kink formation and motion during screw dislocation gliding, which plays an important role in plastic behavior of bcc metals. In this study, atomistic simulations are conducted on the carbon-affected kinking of a screw dislocation in iron using the nudged elastic band method. When kink nucleates alongside a carbon atom, the kink formation energy decreases as the carbon transits to a stronger binding site, and vice versa. When a single kink meets the carbon during propagation, the sideward motion of the kink is impeded. With regard to the different temperatures and solute concentrations, the softening and hardening effects induced by carbon solutes in iron can be explained by the complex atomistic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aguiar Veiga RGd (2011) Computational insights into the strain aging phenomenon in bcc iron at the atomic scale. Ph.D. thesis, Lyon, INSA

  2. Becquart C, Raulot JM, Bencteux G, Domain C, Perez M, Garruchet S, Nguyen H (2007) Atomistic modeling of an Fe system with a small concentration of C. Comput Mater Sci 40(1):119–129

    Article  CAS  Google Scholar 

  3. Becquart CS, Domain C (2011) Modeling microstructure and irradiation effects. Metall Mater Trans A 42(4):852–870

    Article  CAS  Google Scholar 

  4. Brown LM (2008) Strengthening mechanisms in crystal plasticity, by ali-argon. Contemp Phys 54(6):306–307

    Article  Google Scholar 

  5. Butler BG, Paramore JD, Ligda JP, Chai R, Fang ZZ, Middlemas SC, Hemker KJ (2018) Mechanisms of deformation and ductility in tungsten a review. Int J Refract Metals Hard Mater 75:248–261

    Article  CAS  Google Scholar 

  6. Caillard D (2011) An in situ study of hardening and softening of iron by carbon interstitials. Acta Mater 59(12):4974–4989

    Article  CAS  Google Scholar 

  7. Cereceda D, Diehl M, Roters F, Raabe D, Perlado JM, Marian J (2016) Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. Int J Plast 78:242–265

    Article  CAS  Google Scholar 

  8. Chaussidon J, Fivel M, Rodney D (2006) The glide of screw dislocations in bcc Fe: atomistic static and dynamic simulations. Acta Mater 54(13):3407–3416

    Article  CAS  Google Scholar 

  9. Clouet E, Garruchet S, Nguyen H, Perez M, Becquart CS (2008) Dislocation interaction with c in α-Fe: a comparison between atomic simulations and elasticity theory. Acta Mater 56(14):3450–3460

    Article  CAS  Google Scholar 

  10. Gilbert MR, Queyreau S, Marian J (2011) Stress and temperature dependence of screw dislocation mobility in a-Feby molecular dynamics. Phys Rev B 84(17):4193–4198

    Article  CAS  Google Scholar 

  11. Gordon PA, Neeraj T, Li Y, Li J (2010) Screw dislocation mobility in bcc metals: the role of the compact core on double-kink nucleation. Modell Simul Mater Sci Eng 18(18):085008

    Article  CAS  Google Scholar 

  12. Henkelman G, Johnsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985

    Article  CAS  Google Scholar 

  13. Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley

  14. Kirchheim R (2012) Solid solution softening and hardening by mobile solute atoms with special focus on hydrogen. Scripta Mater 67(9):767–770

    Article  CAS  Google Scholar 

  15. Louat N (1956) The effect of temperature on cottrell atmospheres. Proc Phys Soc Sect B 69(4):459–467

    Article  Google Scholar 

  16. Monnet G (2005) Simulation of screw dislocation motion in iron by molecular dynamics simulations. Phys Rev Lett 95(21):215506

    Article  CAS  Google Scholar 

  17. Narayanan S, Mcdowell DL, Zhu T (2014) Crystal plasticity model for bcc iron atomistically informed by kinetics of correlated kinkpair nucleation on screw dislocation. J Mech Phys Solids 65(1):54–68

    Article  CAS  Google Scholar 

  18. Pink E, Arsenault RJ (1980) Low-temperature softening in body-centered cubic alloys. Prog Mater Sci 24(79):1–50

    Article  Google Scholar 

  19. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  20. Proville L, Rodney D, Marinica MC (2012) Quantum effect on thermally activated glide of dislocations. Nat Mater 11(10):845–849

    Article  CAS  Google Scholar 

  21. Seeger A (2001) Why anomalous slip in body-centred cubic metals? Mater Sci Eng A 319(15):254–260

    Article  Google Scholar 

  22. Seeger A, Schiller P (1966) Kinks in dislocation lines and their effects on the internal friction in crystals. In: Mason WP (ed) Physical acoustics: principles and methods. Academic Press, New York

    Google Scholar 

  23. Song J, Curtin WA (2013) Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat Mater 12(2):145–151

    Article  CAS  Google Scholar 

  24. Stukowski A (2009) Visualization and analysis of atomistic simulation data with ovito-the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012

    Article  Google Scholar 

  25. Stukowski A, Bulatov VV, Arsenlis A (2012) Automated identification and indexing of dislocations in crystal interfaces. Modell Simul Mater Sci Eng 20(8):085007

    Article  Google Scholar 

  26. Swinburne TD, Dudarev SL (2018) Kink-limited Orowan strengthening explains the brittle to ductile transition of irradiated and unirradiated bcc metals. Phys Rev Mater 2:073608. https://doi.org/10.1103/PhysRevMaterials.2.073608

    Article  CAS  Google Scholar 

  27. Trinkle DR, Woodward C (2005) The chemistry of deformation: how solutes soften pure metals. Science 310(5754):1665–1667

    Article  CAS  Google Scholar 

  28. Veiga RGA, Perez M, Becquart CS, Clouet E, Domain C (2011) Comparison of atomistic and elasticity approaches for carbon diffusion near line defects in a-iron. Acta Mater 59(18):6963–6974

    Article  CAS  Google Scholar 

  29. Veiga RGA, Perez M, Becquart CS, Domain C (2013) Atomistic modeling of carbon cottrell atmospheres in bcc iron. J Phys Condens Matter 25(2):025401

    Article  CAS  Google Scholar 

  30. Vitek V (2008) Paidar V (2008) Non-planar dislocation cores: a ubiquitous phenomenon affecting mechanical properties of crystalline materials. Dislocations Solids 14(07):439–514

    Article  Google Scholar 

  31. Vitek V (2010) Thermally activated motion of screw dislocations in BCC metals. Phys Status Solidi 18(2):687–701

    Article  Google Scholar 

  32. Weinberger CR, Boyce BL, Battaile CC (2013) Slip planes in bcc transition metals. Int Mater Rev 58(5):296–314

    Article  CAS  Google Scholar 

  33. Wen M, Fukuyama S, Yokogawa K (2003) Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron. Acta Mater 51(6):1767–1773

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Magnetic Confinement Fusion Science Program of China under Grant 2013GB109004 and 2014GB117000 and by National Natural Science Foundation of China under Grant 51471092. The authors would like to acknowledge Danny Perez (LANL, New Mexico, USA) and Thomas D. Swinburne (LANL, New Mexico, USA) for technical assistance and helpful discussions. We appreciate Charlotte S. Becquart (ENSCL, Lille, France) for providing us the Fe–C EAM potential.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ben Xu or Wei Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, X., Li, Q. et al. Atomistic simulations of carbon effect on kink-pair energetics of bcc iron screw dislocations. J Mater Sci 54, 10728–10736 (2019). https://doi.org/10.1007/s10853-019-03564-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03564-y

Navigation