Skip to main content
Log in

On the Possibility of Measuring the Energy Gap in the Spectrum of Spin Waves of Ferromagnets by the Small-Angle Scattering of Polarized Neutrons

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of studying the possibility of measuring the energy gap of a nonfield nature in the spectrum of spin waves in ferromagnets are presented. As a research method, the technique of the small-angle scattering of polarized neutrons in inclined geometry is used, which allows one to separate the contribution of inelastic scattering. Inelastic scattering can be obtained as the difference between the intensities when the neutron beam is polarized along and against the direction of the magnetic field. Spin-wave scattering is concentrated in a cone limited by the cutoff angle θC. It is shown that the square of the cutoff angle linearly depends on the magnetic field H and the energy gap Δ of nonfield nature: \(\theta _{{\text{C}}}^{2}\left( H \right) = \theta _{0}^{2} - \left( {g\mu H + \Delta } \right){{{{\theta }_{0}}} \mathord{\left/ {\vphantom {{{{\theta }_{0}}} E}} \right. \kern-0em} E}\). The parameter \({{\theta }_{0}} = {{\hbar }^{2}}\frac{1}{{2D{{m}_{n}}}}\) is inversely proportional to the constant spin-wave stiffness D of the material. Model calculations for the experiment on small-angle neutron scattering are presented. They convincingly show the possibility of measuring not only the spin-wave stiffness with an accuracy of several percent, but also the nonfield gap Δ with an accuracy of up to 1 μeV. The calculation technique is applied to the results of studying the classical Fe65Ni35 invar alloy at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. I. Okorokov, V. V. Runov, B. P. Toperverg, A. D. Tretyakov, E. I. Maltsev, I. M. Puzeii, and V. E. Mikhailova, JETP Lett. 43, 503 (1986).

    Google Scholar 

  2. V. Deriglazov, A. Okorokov, V. Runov, B. Toperverg, R. Kampmann, H. Eckerlebe, W. Schmidt, and W. Lobner, Phys. B (Amsterdam, Neth.) 180181, 262 (1992). https://doi.org/10.1016/0921-4526(92)90728-B

  3. B. P. Toperverg, V. V. Deriglazov, and V. E. Mikhailova, Phys. B (Amsterdam, Neth.) 183, 326 (1993). https://doi.org/10.1016/0921-4526(93)90045-8

  4. S. V. Grigoriev, S. V. Maleyev, V. V. Deriglazov, A. I. Okorokov, N. H. van Dijk, E. Bruck, J. C. P. Klaasse, H. Eckerlebe, and G. Kozik, Appl. Phys. A 74, 719 (2002).

    Article  Google Scholar 

  5. S. V. Maleev, Phys.—Usp. 45, 569 (2002). https://doi.org/10.1070/PU2002v045n06ABEH001017

    Article  CAS  Google Scholar 

  6. S. V. Grigoriev, A. S. Sukhanov, E. V. Altynbaev, S.‑A. Siegfried, A. Heinemann, P. Kizhe, and S. V. Maleyev, Phys. Rev. B 92, 220415 (2015). https://doi.org/10.1103/PhysRevB.92.220415

    Article  CAS  Google Scholar 

  7. S. V. Grigoriev, E. V. Altynbaev, S.-A. Siegfried, K. A. Pschenichnyi, D. Menzel, A. Heinemann, and G. Chaboussant, Phys. Rev. B 97, 024409 (2018). https://doi.org/10.1103/PhysRevB.97.024409

    Article  CAS  Google Scholar 

  8. S. V. Grigoriev, K. A. Pshenichnyi, E. V. Altynbaev, S.‑A. Siegfried, A. Heinemann, D. Honnecker, and D. Menzel, JETP Lett. 107, 640 (20198. https://doi.org/10.7868/S0370274X18100107

  9. S. V. Grigoriev, K. A. Pschenichnyi, E. V. Altynbaev, S.-A. Siegfried, A. Heinemann, D. Honnecker, and D. Menzel, Phys. Rev. B 100, 094409 (2019). https://doi.org/10.1103/PhysRevB.100.094409

    Article  CAS  Google Scholar 

  10. S. V. Grigoriev, K. A. Pschenichnyi, E. V. Altynbaev, A. Heinemann, and A. Magrez, Phys. Rev. B 99, 054427 (2019). https://doi.org/10.1103/PhysRevB.99.054427

    Article  CAS  Google Scholar 

  11. S. V. Grigoriev, E. V. Altynbaev, H. Eckerlebe, and A. I. Okorokov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 1027 (2014). https://doi.org/10.1134/S1027451014050292

    Article  CAS  Google Scholar 

  12. K. A. Pshenichnyi, E. V. Altynbaev, and S. V. Grigoriev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 408 (2018). https://doi.org/10.1134/S1027451018030163

    Article  CAS  Google Scholar 

  13. S. V. Grigoriev, K. A. Pshenichnyi, I. A. Baraban, V. V. Rodionova, K. A. Chichai, and A. Heinemann, JETP Lett. 110, 793 (2019). https://doi.org/10.1134/S0021364019240056

    Article  CAS  Google Scholar 

  14. A. I. Okorokov, S. V. Grigor’ev, V. V. Runov, G. P. Gordeev, Yu. O. Chetverikov, and G. P. Kopitsa, Poverkhnost’. Rentgen., Sinkhrotr. Neitron. Issled., No. 9, 49 (2007).

  15. A.I. Okorokov, S.V. Grigor’ev, S.V. Metelev, H. Eckerlebe, and N. H. van Dijk, Bull. Russ. Acad. Sci.: Phys. 74, 7227 (2010). https://doi.org/10.3103/S1062873810050412

    Article  Google Scholar 

  16. Akhiezer, A.J., Baryakhtar, V.G. and Peletminskii, S.V., Spin Waves (Nauka, Moscow, 1967).

    Google Scholar 

  17. J. A. Fernandez-Baca, J. W. Lynn, J. J. Rhyne, and G. E. Fish, Phys. Rev. B 36, 8497 (1987). https://doi.org/10.1103/PhysRevB.36.8497

    Article  CAS  Google Scholar 

  18. J. A. Fernandez-Baca, J. J. Rhyne, and G. E. Fish, J. Magn. Magn. Mater. 54–57, 289 (1986). https://doi.org/10.1016/0304-8853(86)90592-5

    Article  Google Scholar 

  19. J. A. Fernandez-Baca, J. W. Lynn, J. J. Rhyne, and G. E. Fish, J. Appl. Phys. 61, 3406 (1987). https://doi.org/10.1063/1.338938

    Article  CAS  Google Scholar 

  20. J. A. Fernandez-Baca, J. W. Lynn, J. J. Rhyne, and G. E. Fish, J. Appl. Phys. 63, 3749 (1987). https://doi.org/10.1063/1.340655

    Article  Google Scholar 

  21. L. Dubrovinsky, N. Dubrovinskaia, I. A. Abrikosov, M. Vennstrom, F. Westman, S. Carlson, M. van Schilfgaarde, and B. Johansson, Phys. Rev. Lett. 86, 4851 (2001). https://doi.org/10.1103/PhysRevLett.86.4851

    Article  CAS  Google Scholar 

  22. V. L. Sedov, Antiferromagnetism of Gamma Iron: Invar Problem (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Helmut Eckerlebe for help in carrying out the experiment on the small-angle scattering of polarized neutrons.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of agreement no. 075-15-2022-830 of May 27, 2022 (prolongation of agreement no. 075-15-2021-1358 of October 12, 2021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. A. Azarova or S. V. Grigoriev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarova, L.A., Vinogradov, R.M., Pshenichniy, K.A. et al. On the Possibility of Measuring the Energy Gap in the Spectrum of Spin Waves of Ferromagnets by the Small-Angle Scattering of Polarized Neutrons. J. Surf. Investig. 16, 1253–1262 (2022). https://doi.org/10.1134/S1027451022060313

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022060313

Keywords:

Navigation