Skip to main content
Log in

Abstract

The effect of contamination on the relief of an MShPS-2.0Si test object for the calibration of a scanning electron microscope (SEM) is studied. The test object is grooves with a trapezoidal profile and large inclination angles of the side walls on the surface of silicon. It is shown that the largest distortions of the structure in the presence of contamination take place in regions adjacent to the region of scanning with an electron probe. The distortions in these regions are so large that these regions cannot be used for SEM calibration. The sizes of these regions reach 20 μm in the lengthwise direction along the grooves and 8 μm across when primary electrons with an energy of 15 keV are used for scanning. The region of scanning with an electron probe has small distortions, which allows one to use this region for SEM calibration. When using primary electrons with an energy of 15 keV and a probe current of 0.2 nA, the size of projections of the lateral inclined walls of the grooves does not change within seven scans. This allows one to use an MShPS-2.0Si test object up to a thousand times for SEM calibration (up to seven times in one spot).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, Berlin, 1998).

    Book  Google Scholar 

  2. H. M. Marchman, J. E. Griffith, J. Z. Y. Guo, J. Frackoviak, and G. K. Celler, J. Vac. Sci. Technol. B 12 (6), 3585 (1994).

    Article  CAS  Google Scholar 

  3. Yu. A. Novikov and A. V. Rakov, Russ. Microelectron. 25 (6), 368 (1996).

    Google Scholar 

  4. Yu. A. Novikov and A. V. Rakov, Meas. Tech. 42 (1), 20 (1999).

    Article  Google Scholar 

  5. M. T. Postek and A.E. Vladar, in Handbook of Silicon Semiconductor Metrology, Ed. by A. C. Diebold (Marcel Dekker, New York, 2001), p. 295.

    Google Scholar 

  6. Scanning Microscopy for Nanotechnology. Techniques and Applications, Ed. by W. Zhou and Z. L. Wang (Springer, New York, 2006).

    Google Scholar 

  7. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Nanoindustriya, No. 4, 36 (2009) [in Russian].

    Google Scholar 

  8. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE, 7405, 740504 (2009). https://doi.org/10.1117/12.826164

    Article  Google Scholar 

  9. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, A. M. Prokhorov, and A. V. Rakov, Russ. Microelectron. 31 (4), 207 (2002).

    Article  CAS  Google Scholar 

  10. Yu. A. Novikov, V. P. Gavrilenko, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 704208 (2008). https://doi.org/10.1117/12.794834

    Article  Google Scholar 

  11. C. G. Frase, W. Hassler-Grohne, G. Dai, H. Bosse, Yu. A. Novikov, and A. V. Rakov, Meas. Sci. Technol. 18, 439 (2007). https://doi.org/10.1088/0957-0233/18/2/S16

    Article  CAS  Google Scholar 

  12. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, and A. V. Rakov, Russ. Microelectron. 33 (6), 342 (2004).

    Article  Google Scholar 

  13. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and Ch. P. Volk, Proc. SPIE, 7272, 72720Z (2009). https://doi.org/10.1117/12.813514

    Article  CAS  Google Scholar 

  14. Yu. A. Novikov, J. Surf. Invest.: X-ray Synchrotron Neutron Tech. 11 (6), 1260 (2017). https://doi.org/10.1134/S1027451017060179

    Article  CAS  Google Scholar 

  15. Yu. A. Novikov, J. Surf. Invest.: X-ray Synchrotron Neutron Tech. 12 (6), 1224 (2018). https://doi.org/10.1134/S1027451018050658

    Article  CAS  Google Scholar 

  16. V. P. Gavrilenko, E. N. Lesnovsky, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and M. N. Filippov, Bull. Russ. Acad. Sci., Phys. 73 (4), 433 (2009). https://doi.org/10.3103/S1062873809040017

    Article  Google Scholar 

  17. V. P. Gavrilenko, M. N. Filippov, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE, 7378, 737812 (2009). https://doi.org/10.1117/12.821760

    Article  Google Scholar 

  18. V. P. Gavrilenko, V. A. Kalnov, Yu. A. Novikov, A. A. Orlikovsky, A. V. Rakov, P. A. Todua, K. A. Valiev, and E. N. Zhikharev, Proc. SPIE, 7272, 727227 (2009). https://doi.org/10.1117/12.814062

    Article  Google Scholar 

  19. M. A. Danilova, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Meas. Tech. 51 (8), 839 (2008).

    Article  Google Scholar 

  20. M. N. Filippov, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE, 7521, 752116 (2010). https://doi.org/10.1117/12.854696

    Article  Google Scholar 

  21. Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE, 6260, 626015 (2006). https://doi.org/10.1117/12.683401

    Article  Google Scholar 

  22. Yu. A. Novikov, Russ. Microelectron. 46 (1), 55 (2017). https://doi.org/10.1134/S1063739717010073

    Article  Google Scholar 

  23. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. I. Plotnikov, A. V. Rakov, and P. A. Todua, in Linear Measurements in Micrometer and Nanometer Ranges for Microelectronics and Nanotechnology (Nauka, Moscow 2006), p. 77. (Proc. IOFAN, vol. 62) [in Russian].

  24. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 70420C-1 (2008). https://doi.org/10.1117/12.794891

    Article  CAS  Google Scholar 

  25. W. Haessler-Grohne and H. Bosse, Meas. Sci. Technol. 9, 1120 (1998).

    Article  Google Scholar 

  26. Ch. P. Volk, E. S. Gornev, V. V. Kalendin, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, H. Bosse, and C. G. Frase, in Proc. 12th Russian Symposium on Scanning Electron Microscopy (Bogorodskii Pechatnik, Chernogolovka, 2001), p. 128 [in Russian].

  27. Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Meas. Sci. Technol. 18, 367 (2007). https://doi.org/10.1088/0957-0233/18/2/S07

    Article  CAS  Google Scholar 

  28. Yu. A. Novikov, Russ. Microelectron. 44 (2), 132 (2015). https://doi.org/10.1134/S1063739715020055

    Article  Google Scholar 

  29. Yu. V. Larionov and Yu. A. Novikov, Proc. SPIE, 7800, 78000Z (2012).

    Google Scholar 

  30. Yu. A. Novikov and A. V. Rakov, in Mechanisms of Secondary Electron Emission from a Relief Surface of Solids (Nauka. Fizmatlit, Moscow, 1998), p. 3. (Proc. IOFAN, Vol. 55) [in Russian].

  31. Yu. A. Novikov and A. V. Rakov, Surface: X-Ray, Synchrotron Neutron Studies 15 (8), 1177 (2000).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

I express my gratitude to A.V. Rakov and V.B. Mityukhlyaev for their help in performing the experiments and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Novikov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, Y.A. Effect of Contamination on a Test Object for SEM Calibration. J. Surf. Investig. 14, 1387–1393 (2020). https://doi.org/10.1134/S1027451020060397

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020060397

Keywords:

Navigation