Skip to main content
Log in

Modern Scanning Electron Microscopy. 2. Test Objects for Scanning Electron Microscopy

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A review of the test objects intended to calibrate scanning electron microscopes and study the secondary-electron emission of a solid-body relief surface using scanning electron microscope is carried out. The test objects are divided according to two parameters: the form of the relief and relief structure. As regards the form of the relief, the test objects are divided into single, pitch, and periodic structures. As regards the relief structure, the test objects are divided into objects with rectangular profiles and those with trapezoidal profiles with large and small angles of side-wall inclination. Examples of such test objects are given. Their characteristics and methods for parameter certification are described. The advantages and disadvantages of test objects are considered. It is shown that tests objects with pitch structures consisting of trapezoidal grooves with large angles of side-wall inclination have the best characteristics. The test objects are produced in single-crystal silicon with {100} surface orientation by means of the method of the liquid anisotropic etching of silicon. These test objects allow the determination of all characteristics of scanning electron microscopes affecting the measurement of the linear sizes of relief structures used in microelectronics and nanotechnology. If they are used, it is possible to make correlation measurements, which increase the calibration accuracy for scanning electron microscopes tenfold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.

Similar content being viewed by others

REFERENCES

  1. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Ed. by J. I. Goldstein and H. Yakowitz (Springer, Heidelberg, 1998).

    Google Scholar 

  2. Practical Scanning Electron Microscopy: Electron and Ion Microprobe Analysis Ed. by J. I. Goldstein and H. Yakowitz (Springer, Berlin, 1975; Mir, Moscow, 1978).

  3. J. I. Goldstein, D. E. Newbury, P. Echlin, et al., Scanning Electron Microscopy and X-Ray Microanalysis (New York; London, 1981; Mir, Moscow, 1984).

  4. Microanalyse et microscopie électronique à balayage, Ed. by F. Maurice, L. Meny, and R. Tixier (Ed. Phys., Les Ulis, 1978; Metallurgiya, Moscow, 1985).

  5. M. M. Krishtal, I. S. Yasnikov, V. I. Polunin, A. M. Filatov, and A. G. Ul’yanenkov Scanning Electron Microscopy and X-Ray Spectral Microanalysis in Examples of Practical Application (Tekhnosfera, Moscow, 2009) [in Russian].

    Google Scholar 

  6. Scanning Microscopy for Nanotechnology: Techniques and Applications, Ed. by W. Zhou and Z. L. Wang (Springer, New York, 2007; Binom, Moscow, 2013).

  7. T. Hatsuzawa, K. Toyoda, and Y. Tanimura, Rev. Sci. Instrum. 61, 975 (1990).

    Article  CAS  Google Scholar 

  8. Yu. A. Novikov, A. V. Rakov, Izmerit. Tekh., No. 1, 14 (1999).

  9. M. T. Postek and A. E. Vladar, in Handbook of Silicon Semiconductor Metrology, Ed. by A. C. Diebold (Marcel Dekker, New York, 2001). p. 295.

    Google Scholar 

  10. M. T. Postek, Proc. SPIE 4608, 84 (2002).

    Article  Google Scholar 

  11. M. T. Postek, Vestn. Tekh. Regulir., No. 7, 8 (2007).

  12. P. A. Todua, V. A. Bykov, Ch. P. Volk, E. S. Gornev, Zhelkobaev Zh., L. M. Zykin, A. B. Ishanov, V. V. Kalendin, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, A. M. Prokhorov, A. V. Rakov, S. A. Saunin, and V. N. Chernyakov, Mikrosist. Tekh., No. 3, 25 (2004).

  13. I. M. Bronshtein and B. S. Fraiman, Secondary Electron Emission (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  14. A. Z. Shul’man and S. A. Fridrikhov, Secondary Emission Methods for Studying Solids (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  15. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 17, 598 (2023).

    Article  CAS  Google Scholar 

  16. V. Gavrilenko, Yu. Novikov, A. Rakov, and P. Todua, Nanoindustriya, No. 4, 36 (2009).

  17. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7405, 740504 (2009). https://www.doi.org/10.1117/12.826164

    Article  Google Scholar 

  18. V. P. Gavrilenko, V. A. Kalnov, Yu. A. Novikov, A. A. Orlikovsky, A. V. Rakov, P. A. Todua, K. A. Valiev, and E. N. Zhikharev, Proc. SPIE 7272, 727227 (2009). https://www.doi.org/10.1117/12.814062

    Article  Google Scholar 

  19. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and Ch. P. Volk, Proc. SPIE 7272, 72720Z (2009). https://www.doi.org/10.1117/12.813514

    Article  Google Scholar 

  20. S. A. Ditsman, V. A. Zlobin, L. N. Nevzorova, and L. P. Favorskaya, Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 2388 (1982).

    CAS  Google Scholar 

  21. Yu. A. Novikov, V. P. Gavrilenko, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Proc. SPIE 6648, 66480R (2007). https://www.doi.org/10.1117/12.733134

    Article  Google Scholar 

  22. Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Meas. Sci. Technol. 18, 367 (2007). https://www.doi.org/10.1088/0957-0233/18/2/S07

    Article  CAS  Google Scholar 

  23. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Zavod. Lab., Diagn. Mater. 74, 31 (2008).

    Google Scholar 

  24. Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Izmerit. Tekh., No. 2, 22 (2009).

  25. Yu. A. Novikov, S. V. Peshekhonov, I. B. Strizhkov, Tr. Inst. Obshch. Fiz. im. A. M. Prokhorova, Ross. Akad. Nauk 49, 20 (1995).

    CAS  Google Scholar 

  26. Yu. A. Novikov, V. P. Gavrilenko, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 704208 (2008). https://www.doi.org/10.1117/12.794834

    Article  Google Scholar 

  27. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 1284 (2019). https://www.doi.org/10.1134/S1027451019060454

    Article  CAS  Google Scholar 

  28. Yu. A. Novikov and S. V. Peshekhonov, Tr. Inst. Obshch. Fiz. im. A. M. Prokhorova, Ross. Akad. Nauk 49, 107 (1995).

    CAS  Google Scholar 

  29. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 105 (2020). https://www.doi.org/10.1134/S1027451020010127

    Article  CAS  Google Scholar 

  30. H. Bosse, W. Mirande, C. G. Frase, H.-J. Bruck, and S. Lehnigk, in Proc. 17th Eur. Conf. on Mask Technology for Integrated Circuits and Micro-Components (Munich, 2000), p. 111.

  31. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, A. M. Prokhorov, and A. V. Rakov, Russ. Microelectron. 31, 207 (2002).

    Article  CAS  Google Scholar 

  32. Y. Nakayama, S. Okazaki, and A. Sugimoto, J. Vac. Sci. Technol., B 6, 1930 (1988).

    Article  CAS  Google Scholar 

  33. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7718, 77180Y (2010). https://www.doi.org/10.1117/12.853892

    Article  Google Scholar 

  34. Yu. A. Novikov and A. V. Rakov, Tr. Inst. Obshch. Fiz. im. A. M. Prokhorova, Ross. Akad. Nauk 55, 3 (1998).

    CAS  Google Scholar 

  35. Yu. A. Novikov, A. M. Prokhorov, and A. V. Rakov, Poverkhn.: Fiz., Khim., Mekh., No. 3, 22 (1993).

  36. Yu. A. Novikov and A. V. Rakov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 8, 24 (1999).

  37. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 16, 806 (2022). https://www.doi.org/10.1134/S1027451022050147

    Article  CAS  Google Scholar 

  38. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. I. Plotnikov, A. V. Rakov, and P. A. Todua, Tr. Inst. Obshch. Fiz. im. A. M. Prokhorova, Ross. Akad. Nauk 62, 77 (2006).

    Google Scholar 

  39. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 70420C (2008). https://www.doi.org/10.1117/12.794891

    Article  Google Scholar 

  40. Yu. A. Novikov, Russ. Microelectron. 43, 361 (2014). https://doi.org/10.1134/S1063739714050047

    Article  CAS  Google Scholar 

  41. M. T. Postek, Scanning Microsc. 3, 1087 (1989).

    Google Scholar 

  42. J. Geist, B. Belzer, M. L. Miller, and P. Roitman, J. Res. Natl. Inst. Stand. Technol. 97, 267 (1992).

    Article  CAS  Google Scholar 

  43. Yu. A. Novikov, S. V. Peshekhonov, A. V. Rakov, A. N. Simonov, I. B. Strizhkov, and V. V. Tsybul’skii, Poverkhn.: Fiz., Khim., Mekh., No. 5, 49 (1993).

  44. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 16, 797 (2022). https://www.doi.org/10.1134/S1027451022050135

    Article  CAS  Google Scholar 

  45. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 496 (2015). https://doi.org/10.1134/S102745101503009X

    Article  CAS  Google Scholar 

  46. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 892 (2016). https://doi.org/10.1134/S1027451016050116

    Article  CAS  Google Scholar 

  47. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7405, 740507 (2009). https://www.doi.org/10.1117/12.826190

    Article  Google Scholar 

  48. W. Häßler-Grohne and H. Bosse, Meas. Sci. Technol. 9, 1120 (1998).

    Article  Google Scholar 

  49. I. Brodie and J. J. Murray, The Physics of Microfabrication (Plenum, New York, 1982; Mir, Moscow, 1985).

  50. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 1260 (2017). https://doi.org/10.1134/S1027451017060179

    Article  CAS  Google Scholar 

  51. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 179 (2018). https://doi.org/10.1134/S1027451018010317

    Article  CAS  Google Scholar 

  52. M. A. Danilova, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Izmerit. Tekh., No. 8, 20 (2008).

  53. M. A. Danilova, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, P. A. Todua, Izmerit. Tekh., No. 9, 49 (2008).

  54. V. P. Gavrilenko, M. N. Filippov, Yu. A. Novikov, A. V. Rakov, P. A. Todua, Proc. SPIE 6648, 66480T (2007). https://www.doi.org/10.1117/12.733566

    Article  Google Scholar 

  55. Ch. P. Volk, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Izmerit. Tekh., No. 6, 18 (2008).

  56. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 890 (2017). https://www.doi.org/10.1134/S1027451017040255

    Article  CAS  Google Scholar 

  57. Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Russ. Microelectron. 37, 390 (2008).

    Article  Google Scholar 

  58. Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, A. V. Rakov, and P. A. Todua, Tr. Inst. Obshch. Fiz. im. A. M. Prokhorova, Ross. Akad. Nauk 62, 36 (2006).

    Google Scholar 

  59. G. Dai, F. Pohlenz, H.-U. Danzebrink, M. Xu, K. Hasche, G. Wilkening, Rev. Sci. Instrum. 75, 962 (2004). https://www.doi.org/10.1063/1.1651638

    Article  CAS  Google Scholar 

  60. C. G. Frase, W. Häßler-Grohne, G. Dai, H. Bosse, Yu. A. Novikov, A. V. Rakov, Meas. Sci. Technol. 18, 439 (2007). https://www.doi.org/10.1088/0957-0233/18/2/S16

    Article  CAS  Google Scholar 

  61. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 502 (2021). https://doi.org/10.1134/S1027451021020294

    Article  CAS  Google Scholar 

  62. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 987 (2021). https://doi.org/10.1134/S102745102105013X

    Article  CAS  Google Scholar 

  63. Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Russ. Microelectron. 44, 269 (2015). https://doi.org/10.1134/S1063739715030075

    Article  Google Scholar 

  64. Ch. P. Volk, E. S. Gornev, V. V. Kalendin, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, H. Bosse, and C. G. Frase, in Proc. 12th Russ. Symp. on Scanning Electron Microscopy (Chernogolovka, 2001), p. 128.

  65. V. P. Gavrilenko, E. N. Lesnovsky, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and M. N. Filippov, Bull. Russ. Acad. Sci.: Phys. 73, 433 (2009).

    Article  Google Scholar 

  66. V. P. Gavrilenko, M. N. Filippov, Yu. A. Novikov, A. V. Rakov, P. A. Todua, Proc. SPIE 7378, 737812 (2009). https://www.doi.org/10.1117/12.821760

    Article  Google Scholar 

  67. Yu. V. Larionov and Yu. A. Novikov, Proc. SPIE 7800, 78000W (2012). https://www.doi.org/10.1117/12.2016850

    Google Scholar 

  68. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 727 (2019). https://doi.org/10.1134/S102745101904030X

    Article  CAS  Google Scholar 

  69. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 221 (2016). https://doi.org/10.1134/S1027451016010286

    Article  CAS  Google Scholar 

  70. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 1060 (2015). https://doi.org/10.1134/S1027451015050389

    Article  CAS  Google Scholar 

  71. Yu. A. Novikov, A. V. Rakov, and M. N. Filippov, Izv. Ross. Akad. Nauk., Ser. Fiz. 62, 543 (1998).

    CAS  Google Scholar 

  72. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 972 (2019). https://doi.org/10.1134/S1027451019050100

    Article  CAS  Google Scholar 

  73. Yu. A. Novikov, A. V. Rakov, and I. Yu. Stekolin, Izv. Ross. Akad. Nauk., Ser. Fiz. 57 (8), 79 (1993).

    CAS  Google Scholar 

  74. W. T. Eadie, D. Drijard, F. E. James, M. Roos, and B. Sadoulet, Statistical Methods in Experimental Physics (Elsevier, Amsterdam, 1971; Atomizdat, Moscow, 1976).

  75. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 609 (2020). https://doi.org/10.1134/S1027451020030106

    Article  CAS  Google Scholar 

  76. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 965 (2020). https://www.doi.org/10.1134/S1027451020050134

    Article  CAS  Google Scholar 

  77. Yu. A. Novikov, A. V. Rakov, I. Yu. Stekolin, Izmerit. Tekh., No. 12, 26 (1996).

  78. Yu. A. Novikov, I. Yu. Stekolin, Tr. Inst. Obshch. Fiz. im. A. M. Prokhorova, Ross. Akad. Nauk 49, 41 (1995).

    CAS  Google Scholar 

  79. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 1387 (2020). https://www.doi.org/10.1134/S1027451020060397

    Article  CAS  Google Scholar 

  80. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, and A. V. Rakov, Russ. Microelectron. 33, 342 (2004).

    Article  Google Scholar 

  81. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 1081 (2013). https://doi.org/10.1134/S1027451013060141

    Article  CAS  Google Scholar 

  82. Yu. A. Novikov, Russ. Microelectron. 43, 258 (2014). https://doi.org/10.1134/S1063739714040076

    Article  Google Scholar 

  83. Yu. A. Novikov, Russ. Microelectron. 43, 427 (2014). https://doi.org/10.1134/S1063739714060079

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Novikov.

Ethics declarations

The author states that he has no conflicts of interest.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, Y.A. Modern Scanning Electron Microscopy. 2. Test Objects for Scanning Electron Microscopy. J. Surf. Investig. 17, 1422–1438 (2023). https://doi.org/10.1134/S102745102306040X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102306040X

Keywords:

Navigation