Skip to main content
Log in

Calibration of a Scanning Electron Microscope: 1. Selection of the SEM Parameters

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The influence of the parameters of a scanning electron microscope (SEM) on its calibration using test objects with a trapezoidal profile and large inclination angles of the side walls is studied. The focusing of the SEM probe and the energy of its electrons affect SEM calibration in the modes of collecting secondary slow electrons and backscattered electrons. It is shown that the microscope can be calibrated only in the low-voltage mode of operation with an energy of primary electrons less than 2 keV and in the mode of collecting secondary slow electrons with an energy of primary electrons more than 10 keV. A model of the formation of microscope signals in these energy ranges is presented. The influence of contamination on the lifetime of the test object and on the calibration accuracy of the scanning electron microscope is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, New York, 1998).

    Book  Google Scholar 

  2. M. T. Postek and A. E. Vladar, “Critical Dimension Metrology and the Scanning Electron Microscope,” in Handbook of Silicon Semiconductor Metrology, Ed. by A. C. Diebold (Marcel Dekker, New York, 2001), p. 295.

    Google Scholar 

  3. Yu. A. Novikov and A. V. Rakov, Meas. Tech. 42 (1), 20 (1999).

    Article  Google Scholar 

  4. T. Hatsuzawa, K. Toyoda, and Y. Tanimura, Rev. Sci. Instrum. 61 (3), 975 (1990).

    Article  CAS  Google Scholar 

  5. V. Gavrilenko, Yu. Novikov, A. Rakov, and P. Todua, Nanoindustriya, No. 4, 36 (2009). [in Russian]

  6. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7405, 740504 (2009). https://doi.org/10.1117/12.826164

    Article  Google Scholar 

  7. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 7 (3), 497 (2013). https://doi.org/10.1134/S1027451013030105

    Article  CAS  Google Scholar 

  8. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 7 (4), 802 (2013). https://doi.org/10.1134/S1027451013040368

    Article  CAS  Google Scholar 

  9. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, A. M. Prokhorov, and A. V. Rakov, Russ. Microelectron. 31 (4), 207 (2002).

    Article  CAS  Google Scholar 

  10. Yu. A. Novikov, V. P. Gavrilenko, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Proc. SPIE 6648, 66480 (2007). https://doi.org/10.1117/12.733134

    Article  CAS  Google Scholar 

  11. M. A. Danilova, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Meas. Tech. 51 (9), 998 (2008). https://doi.org/10.1007/s11018-008-9152-8

    Article  Google Scholar 

  12. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11 (6), 1260 (2017). https://doi.org/10.1134/S1027451017060179

    Article  CAS  Google Scholar 

  13. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12 (6), 1224 (2018). https://doi.org/10.1134/S1027451018050658

    Article  CAS  Google Scholar 

  14. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, and A. V. Rakov, Russ. Microelectron. 33 (6), 342 (2004).

    Article  Google Scholar 

  15. V. A. Kal’nov, Yu. A. Novikov, and A. A. Orlikovsky, Russ. Microelectron. 41 (6), 347 (2012). https://doi.org/10.1134/S1063739712020072

    Article  Google Scholar 

  16. V. P. Gavrilenko, M. N. Filippov, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7378, 737812 (2009). https://doi.org/10.1117/12.821760

    Article  Google Scholar 

  17. V. P. Gavrilenko, E. N. Lesnovsky, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and M. N. Filippov, Bull. Russ. Acad. Sci.: Phys. 73 (4), 433 (2009). https://doi.org/10.3103/S1062873809040017

    Article  Google Scholar 

  18. M. A. Danilova, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Meas. Tech. 51 (8), 839 (2008). https://doi.org/10.1007/s11018-008-9135-9

    Article  Google Scholar 

  19. V. P. Gavrilenko, V. A. Kalnov, Yu. A. Novikov, A. A. Orlikovsky, A. V. Rakov, P. A. Todua, K. A. Valiev, and E. N. Zhikharev, Proc. SPIE 7272, 727227 (2009). https://doi.org/10.1117/12.814062

    Article  Google Scholar 

  20. P. A. Todua, V. P. Gavrilenko, Yu. A. Novikov, and A. V. Rakov, Proc. SPIE 7042, 704209 (2008). https://doi.org/10.1117/12.794926

    Article  CAS  Google Scholar 

  21. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (6), 1244 (2014). https://doi.org/10.1134/S1027451014060123

  22. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (3), 604 (2015). https://doi.org/10.1134/S1027451015030325

  23. Yu. A. Novikov, Russ. Microelectron. 43 (4), 258 (2014). https://doi.org/10.1134/S1063739714040076

    Article  Google Scholar 

  24. Yu. A. Novikov, Russ. Microelectron. 43 (6), 427 (2014). https://doi.org/10.1134/S1063739714060079

    Article  Google Scholar 

  25. Yu. A. Novikov, Russ. Microelectron. 44 (4), 269 (2015). https://doi.org/10.1134/S1063739715030075

    Article  Google Scholar 

  26. W. Haessler-Grohne and H. Bosse, Meas. Sci. Technol. 9, 1120 (1998).

    Article  Google Scholar 

  27. Ch. P. Volk, E. S. Gornev, V. V. Kalendin, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, H. Bosse, and C. G. Frase, in Proceedings of the 12th Russian Symposium on Scanning Electron Microscopy and Analytical Methods to Study Solids (Chernogolovka, 2001), p. 128 [in Russian].

  28. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 14 (3), 609 (2020). https://doi.org/10.1134/S1027451020030106

    Article  CAS  Google Scholar 

  29. Yu. A. Novikov, S. A. Darnel, M. N. Filippov, V. B. Mityukhlyaev, A. V. Rakov, and P. A. Todua, Proc. SPIE 7025, 702511 (2008). https://doi.org/10.1117/12.802428

    Article  CAS  Google Scholar 

  30. Yu. A. Novikov, A. V. Rakov, and I. Yu. Stekolin, Meas. Tech. 39 (12), 1204 (1996). https://doi.org/10.1007/BF02375406

    Article  Google Scholar 

  31. Yu. A. Novikov, Russ. Microelectron. 43 (5), 361 (2014). https://doi.org/10.1134/S1063739714050047

    Article  CAS  Google Scholar 

  32. Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Meas. Sci. Technol. 18, 367 (2007). https://doi.org/10.1088/0957-0233/18/2/S07

    Article  CAS  Google Scholar 

  33. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. I. Plotnikov, A. V. Rakov, and P. A. Todua, Linear measurements in micrometer and nanometer ranges for microelectronics and nanotechnology. Moscow: Nauka, 2006, P. 77. (Proc. IOFAN, Vol. 62). [in Russian].

  34. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 70420 (2008). https://doi.org/10.1117/12.794891

    Article  CAS  Google Scholar 

  35. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8 (6), 1252 (2014). https://doi.org/10.1134/S1027451014060135

    Article  CAS  Google Scholar 

  36. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 9 (5), 1060 (2015). https://doi.org/10.1134/S1027451015050389

    Article  CAS  Google Scholar 

  37. Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 14 (6), 1387 (2020).https://doi.org/10.1134/S1027451020060397

Download references

ACKNOWLEDGMENTS

I am grateful to A. V. Rakov and V. B. Mityukhlyaev for their participation in the experiments and helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Novikov.

Additional information

Translated by I. Obrezanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, Y.A. Calibration of a Scanning Electron Microscope: 1. Selection of the SEM Parameters. J. Surf. Investig. 15, 502–512 (2021). https://doi.org/10.1134/S1027451021020294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021020294

Keywords:

Navigation