Skip to main content
Log in

Two-Flux Model of Charged-Particle Transport in a Condensed Material under Multiple Scattering: Average Energy Losses and Range of a Beam of Monoenergetic Electrons with Energies of 0.1 keV−1.0 MeV

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of using a two-flux model of charged-particle transport in a substance are presented to describe the average energy of a monoenergetic electron beam passed through a film target with known composition and a given thickness. Formulas describing the distribution of the average energy of the electron beam over the target depth and the energy dependence of the electron-beam range for electrons with an energy of 0.1 keV–1.0 MeV are obtained. The results of calculating the electron ranges for a wide range of materials, namely, from Be to Au, are given. The particle ranges calculated using the formulas are compared with the experimental results of measuring the depth of their penetration into the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. N. Mikheev and M. A. Stepovich, Materials Sci. Engineering B 32 (1–2), 11 (1995).

    Article  Google Scholar 

  2. N. N. Mikheev, Izv. Ross. Akad. Nauk, Ser. Fiz. 64 (11), 2137 (2000).

    Google Scholar 

  3. N. N. Mikheev, M. A. Stepovich, and S. N. Yudina, J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 3 (2), 218 (2009).

    Article  Google Scholar 

  4. N. N. Mikheev, J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 4, 289 (2010).

    Article  Google Scholar 

  5. N. N. Mikheev and A. S. Kolesnik, J. Surf. Invest.: X‑Ray Synchrotron Neutron Tech. 11, 1265 (2017).

    Article  Google Scholar 

  6. K. Kanaya and S. Okayama, J. Phys. D: Appl. Phys. 5 (1), 43 (1972).

    Article  Google Scholar 

  7. H.-J. Fitting, J. Electron Spectrosc. Relat. Phenom. 136, 265 (2004).

    Article  Google Scholar 

  8. H.-J. Fitting, Phys. Status Solidi A 26 (2), 525 (1974).

    Article  Google Scholar 

  9. I. S. Tilinin, Sov. Phys. JETP (Engl. Transl.) 67, 1570 (1988).

    Google Scholar 

  10. N. N. Mikheev, M. A. Stepovich, and E. V. Shirokova, Bull. Russ. Acad. Sci.: Phys. 74 (7), 1002 (2010).

    Article  Google Scholar 

  11. L. D. Landau and E. M. Livshits, Quantum Mechanics. Non-Relativistic Theory (Nauka, Moscow, 1974) [In Russian].

    Google Scholar 

  12. B. F. Ormont, Introduction to Physical Chemistry and Crystal Chemistry of Semiconductors (Vysshaya shkola, Moscow, 1973) [In Russian].

  13. S. J. B. Reed, Electron Microprobe Analysis (Cambridge Univ. Press, Cambridge, 1975; Mir, Moscow, 1979).

  14. V. E. Cosslett and R. N. Thomas, Brit. J. Appl. Phys. 15, 1283 (1964).

    Article  Google Scholar 

  15. A. E. Gruen, Naturforsch. (A) 12, 89 (1967).

    Google Scholar 

  16. T. Everhart and P. Hoff, in Electron Probe Microanalysis, ed. by A. J. Tousimis and L. Marton (Academic Press, New York, 1969; Mir, Moscow, 1974).

  17. A. Vignes and G. Dez, J. Phys. D: Appl. Phys 1, 1309 (1968).

    Article  Google Scholar 

  18. R. Casteaing and J. Descamps, J. Phys. Radium 16, 304 (1955).

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education within the framework of the State Assignment of the Federal Scientific Research Center “Crystallography and Photonics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Mikheev.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheev, N.N. Two-Flux Model of Charged-Particle Transport in a Condensed Material under Multiple Scattering: Average Energy Losses and Range of a Beam of Monoenergetic Electrons with Energies of 0.1 keV−1.0 MeV. J. Surf. Investig. 13, 719–726 (2019). https://doi.org/10.1134/S1027451019040281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019040281

Keywords

Navigation