Skip to main content
Log in

Statistical Model of the Discrete Multiple Scattering of Charged Particles in a Substance Layer

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of using a fundamentally new approach to describe the discrete processes of the multiple scattering of a directed proton beam in a substance layer are presented. The basic parameter is the average number of interactions experienced by particles in a film of known thickness. This makes it possible to effectively calculate the energy and angular distributions of fast particles passing through the film in a form corresponding to the experimental spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. A. Bethe, Ann. Phys. (Leipzig) 5, 325 (1930).

    Article  CAS  Google Scholar 

  2. F. Bloch, Z. Phys. 81, 363 (1933).

    Article  CAS  Google Scholar 

  3. G. Moliere, Z. Naturforsch., A: Astrophys., Phys. Phys. Chem. 2, 133 (1947).

    Google Scholar 

  4. R. M. Sternheimer, in Fundamental Principles and Methods of Particle Detection, Ed. by C.-S. Wu and L. C. L. Yuan (Academic, New York, 1961; Inostrannaya Literatura, Moscow, 1963).

  5. ICRU Report 49. Stopping Powers and Ranges for Protons and Alpha Particles (Int. Commission on Radiat. Units Meas., 1993).

    Google Scholar 

  6. H. H. Andersen and J. F. Ziegler, Hydrogen Stopping Powers and Ranges in All Elements (Pergamon, New York, 1977).

    Google Scholar 

  7. ICRU Report 37. Stopping Powers for Electrons and Positrons (Int. Commission on Radiat. Units Meas., 1984).

    Google Scholar 

  8. N. N. Mikheev, Izv. Ross. Akad. Nauk, Ser. Fiz. 64, 2137 (2000).

    CAS  Google Scholar 

  9. N. N. Mikheev, M. A. Stepovich, and S. N. Yudina, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3, 218 (2009). https://doi.org/10.1134/S1027451009020086

    Article  Google Scholar 

  10. N. N. Mikheev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4, 289 (2010). https://doi.org/10.1134/S1027451010020217

    Article  Google Scholar 

  11. N. N. Mikheev, M. A. Stepovich, and E. V. Shirokova, Bull. Russ. Acad. Sci.: Phys. 74, 1002 (2010). https://doi.org/10.3103/S1062873810070245

    Article  Google Scholar 

  12. N. N. Mikheev, M. A. Stepovich, and E. V. Shirokova, Bull. Russ. Acad. Sci.: Phys. 76, 974 (2012). https://doi.org/10.3103/S1062873812090122

    Article  CAS  Google Scholar 

  13. N. N. Mikheev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 916 (2014). https://doi.org/10.1134/S1027451014050139

    Article  CAS  Google Scholar 

  14. N. N. Mikheev and A. S. Kolesnik, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 11, 1265 (2017). https://doi.org/10.1134/S1027451017050305

    Article  CAS  Google Scholar 

  15. N. N. Mikheev, N. A. Nikiforova, and M. A. Stepovich, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 64 (2019). https://doi.org/10.1134/S1027451019010142

    Article  CAS  Google Scholar 

  16. N. N. Mikheev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 1309 (2020). https://doi.org/10.1134/S1027451020060385

    Article  CAS  Google Scholar 

  17. L. D. Landau and E. M. Lifshits, Quantum Mechanics. Nonrelativistic Theory (Fizmatgiz, Moscow, 1963).

    Google Scholar 

  18. N. N. Mikheev and M. A. Stepovich, Mater. Sci. Eng., B 32, 11 (1995).

    Article  Google Scholar 

  19. E. J. Williams, Proc. R. Soc. 125, 420 (1929).

  20. D. B. Brown, D. D. Wittry, and D. F. Kyzer, J. Appl. Phys. 40, 1627 (1969).

    Article  CAS  Google Scholar 

  21. L. D. Landau, Collection of Papers (Nauka, Moscow, 1969), Vol. 1, p. 482.

    Google Scholar 

  22. N. N. Mikheev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 281 (2020). https://doi.org/10.1134/S1027451020020299

    Article  CAS  Google Scholar 

  23. C. Tschalar and H. D. Maccabee, Phys. Rev. B 1, 2863 (1970).

    Article  Google Scholar 

  24. N. N. Mikheev, J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 13, 719 (2019). https://doi.org/10.1134/S0207352819080109

    Article  CAS  Google Scholar 

  25. J. Lindhard, “Influence of crystal lattice on motion of energetic charged particles,” Mat.-Fys. Medd. Dan. Vid. Selsk. 34, No. 14 (1965).

  26. Y.-H. Ohtsuki, Charged Beam Interaction with Solids (Taylor and Francis, London, 1983; Mir, Moscow, 1985).

  27. G. D. Ved’manov, Yu. G. Lazarev, L. I. Nikolaichuk, V. I. Radchenko, and N. A. Khizhnyak, Izv. Ross. Akad. Nauk, Ser. Fiz. 59 (10), 141 (1995).

    Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Mikheev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheev, N.N. Statistical Model of the Discrete Multiple Scattering of Charged Particles in a Substance Layer. J. Surf. Investig. 16, 611–617 (2022). https://doi.org/10.1134/S1027451022030296

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030296

Keywords:

Navigation