Skip to main content
Log in

Simultaneous distribution between the deflection angle and the lateral displacement under the Molière theory of multiple scattering

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Simultaneous distribution between the deflection angle and the lateral displacement of fast charged particles traversing through matter is derived by applying numerical inverse Fourier transforms on the Fourier spectral density solved analytically under the Molière theory of multiple scattering, taking account of ionization loss. Our results show the simultaneous Gaussian distribution at the region of both small deflection angle and lateral displacement, though they show the characteristic contour patterns of probability density specific to the single and the double scatterings at the regions of large deflection angle and/or lateral displacement. The influences of ionization loss on the distribution are also investigated. An exact simultaneous distribution is derived under the fixed energy condition based on a well-known model of screened single scattering, which indicates the limit of validity of the Molière theory applied to the simultaneous distribution. The simultaneous distribution will be valuable for improving the accuracy and the efficiency of experimental analyses and simulation studies relating to charged particle transports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Molière, Z. Naturforsch. 2a, 133 (1947)

    ADS  Google Scholar 

  2. G. Molière, Z. Naturforsch. 3a, 78 (1948)

    ADS  Google Scholar 

  3. H.A. Bethe, Phys. Rev. 89, 1256 (1953)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. T. Nakatsuka, J. Nishimura, Phys. Rev. E 78, 021136 (2008)

    Article  ADS  Google Scholar 

  5. G. Molière, Z. Naturforsch. 10a, 177 (1955)

    ADS  Google Scholar 

  6. K. Kamata, J. Nishimura, Prog. Theor. Phys. Suppl. 6, 93 (1958)

    Article  ADS  Google Scholar 

  7. J. Nishimura, in Handbuch der Physik, Band 46, edited by S. Flügge (Springer, Berlin, 1967) Teil 2, p. 1

  8. T. Nakatsuka, Phys. Rev. D 35, 210 (1987)

    Article  ADS  Google Scholar 

  9. P. Andreo, J. Medin, A.F. Bielajew, Med. Phys. 20, 1315 (1993)

    Article  Google Scholar 

  10. T. Nakatsuka, K. Okei, N. Takahashi, Nucl. Instrum. Methods Phys. Res. B 311, 60 (2013)

    Article  ADS  Google Scholar 

  11. H. Snyder, W.T. Scott, Phys. Rev. 76, 220 (1949)

    Article  ADS  MATH  Google Scholar 

  12. A.F. Bielajew, Nucl. Instrum. Methods Phys. Res. B 86, 257 (1994)

    Article  ADS  Google Scholar 

  13. W.T. Scott, Rev. Mod. Phys. 35, 231 (1963)

    Article  ADS  Google Scholar 

  14. A. Iyono, S. Yamamoto, H. Matsumoto, K. Okei, T. Nakatsuka, in Proceedings of the 34th International Cosmic Ray Conference, Hague, 2015, PoS (ICRC, 2015) 957, http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=236

  15. DONUT Collaboration (K. Kodama et al.), Phys. Lett. B 504, 218 (2001)

    Article  ADS  Google Scholar 

  16. M. De Serio et al., Nucl. Instrum. Methods Phys. Res. A 512, 539 (2003)

    Article  ADS  Google Scholar 

  17. MACRO Collaboration (M. Ambrosio et al.), Phys. Lett. B 566, 35 (2003)

    Article  ADS  Google Scholar 

  18. MACRO Collaboration (M. Ambrosio et al.), Nucl. Instrum. Methods Phys. Res. A 492, 376 (2002)

    Article  ADS  Google Scholar 

  19. S. Aoki et al., Nucl. Phys. B Proc. Suppl. 196, 50 (2008)

    Article  ADS  Google Scholar 

  20. MACRO Collaboration (M. Ambrosio et al.), Astrophys. J. 546, 1038 (2001)

    Article  ADS  Google Scholar 

  21. B. Rossi, K. Greisen, Rev. Mod. Phys. 27, 240 (1941)

    Article  ADS  Google Scholar 

  22. T. Nakatsuka, K. Kobayakawa, T. Kitamura, in 20th International Cosmic Ray Conference, Moscow, 1987, Conference Papers, Vol. 6, p. 261

  23. K. Okei, T. Nakatsuka, in Proceedings of the Fourteenth EGS User’s Meeting in Japan, KEK Proceedings 2007-5 (2007) 26

  24. L. Eyges, Phys. Rev. 74, 1534 (1948)

    Article  ADS  Google Scholar 

  25. S. Wolfram, The Mathematica Book, 4th edition (Cambridge University Press, Cambridge, UK, 1999)

  26. T. Nakatsuka, Phys. Rev. D 58, 056002 (1998)

    Article  ADS  Google Scholar 

  27. K. Okei, N. Takahashi, T. Nakatsuka, in 30th International Cosmic Ray Conference, Merida, 2007, Conference Papers, Vol. 4, p. 157

  28. M. Abramowitz and I. A. Stegun (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965)

  29. W.R. Nelson, H. Hirayama, D.W.O. Rogers, The EGS4 Code System, SLAC-265, Stanford Linear Accelerator Center (Dec. 1985)

  30. GEANT4 Collaboration, Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Nakatsuka.

Additional information

Communicated by M. Anselmino

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakatsuka, T., Okei, K., Iyono, A. et al. Simultaneous distribution between the deflection angle and the lateral displacement under the Molière theory of multiple scattering. Eur. Phys. J. A 51, 161 (2015). https://doi.org/10.1140/epja/i2015-15161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15161-5

Keywords

Navigation