Skip to main content
Log in

Electrochemical Immobilization of Silver Nanoparticles in a Polymethylolacryalmide Matrix

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The possibility is studied of electrochemical synthesis of a nanocomposite of polymer/silver nanoparticles. The composite was formed in two stages including synthesis of a polymethylolacrylamide film by electropolymerization and the further immobilization of silver nanoparticles in a polymer matrix using the method of electrochemical reduction of metal ions to Ag0 in a film impregnated by AgNO3 solution. Physical, chemical, electrochemical, and catalytic characteristics of hybrid materials are studied. The presence of Ag0 in the polymer is confirmed both visually and using the methods of X-ray phase analysis, plasmon resonance, scanning electron microscopy, energy–dispersive and atomic absorption analysis. The optimum modes of electrochemical immobilization of Ag0 nanoparticles in the polymer are determined. The effect of the potential sweep rate, number of cycles and AgNO3 concentration on the completeness of reduction of Ag+ and amount of silver immobilized in the composite is studied. It is found that electroreduction of Ag+ to Ag0 occurs predominantly in the first cycle. The method of small–angle X-ray scattering is used to obtain the functions of silver particle distribution by radii. It is established that the average diameter of Ag nanoparticles is about 20 nm. It is found that polymer methylolacrylamide films containing silver nanoparticles manifest electrocatalytic activity towards hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Blanco, I., Bottino, F.A., Cicala, G., and Latteri, A., A kinetic study of the thermal and thermal oxidative degradations of new bridged POSS/PS nanocomposites, Polym. Degrad. Stab., 2013, vol. 98, p. 2564.

    Article  CAS  Google Scholar 

  2. Blanco, I., A kinetic study of the thermal and thermal oxidative degradations of new bridged POSS/PS nanocomposites, Polyhedral oligomeric silsesquioxanes (POSS)s in medicine, J Nanomed., 2018, vol. 1, p. 1002.

    Article  Google Scholar 

  3. Han, J., Wang, M., Hua, Y., Zhou, Ch., and Guo, R., Conducting polymer-noble metal nanoparticle hybrids: Synthesis mechanism application, Prog. Polym. Sci., 2017, vol. 70, p. 52.

    Article  CAS  Google Scholar 

  4. Shchitovskaya, E.V., Kolzunova, L.G., Kuryavyi, V.G., and Slobodyuk, A.B., Electrochemical formation and properties of polymethylolacrylamide film with inclusion of platinum particles, Russ. J. Electrochem., 2015, vol. 51, p. 1097.

    Article  CAS  Google Scholar 

  5. Zheng, Y., Wang, H., and Ma, Z., A nanocomposite containing Prussian Blue, platinum nanoparticles and polyaniline for multi-amplification of the signal of voltammetric immunosensors: highly sensitive detection of carcinoma antigen 125, Microchim. Acta, 2017, vol. 184, p. 4269.

    Article  CAS  Google Scholar 

  6. Ma, Y., Shen, X-L., Zeng, Q., and Wang, L-S., A glassy carbon electrode modified with graphene nanoplatelets, gold nanoparticles and chitosan, and coated with a molecularly imprinted polymer for highly sensitive determination of prostate specific antigen, Microchim. Acta, 2017, vol. 184, p. 4469.

    Article  CAS  Google Scholar 

  7. Jin, S.A., Heo, Y., Lin, L.K., Deering, A.J., Chiu, G.T.C., Allebach, J.P., and Stanciu, L.A., Gold decorated polystyrene particles for lateral flow immunodetection of Escherichia coli O157:H7, Microchim. Acta, 2017, vol. 184, p. 4879.

    Article  CAS  Google Scholar 

  8. Kafi, A.K.M., Wali, Q., Jose, R., Biswas, T.K., and Yusoff, M.M., A glassy carbon electrode modified with SnO2 nanofibers, polyaniline and hemoglobin for improved amperometric sensing of hydrogen peroxide, Microchim. Acta, 2017, vol. 184, p. 4443.

    Article  CAS  Google Scholar 

  9. Ahmad, H., Ahmad, A., and Islam, S.S., Magnetic Fe3O4@poly(methacrylic acid) particles for selective preconcentration of trace arsenic species, Microchim. Acta, 2017, vol. 184, p. 2007.

    Article  CAS  Google Scholar 

  10. Haghshenas, E., Madrakian, T., and Afkhami, A., A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples, Mater. Sci. Eng., 2015, vol. 57, p. 205.

    Article  CAS  Google Scholar 

  11. Priecela, P., Salamia, H.A., Padillaa, R.H., Zhong, Z., and Lopez-Sancheza, J.A., Anisotropic gold nanoparticles: Preparation and applications in catalysis, Chin. J. Catal., 2016, vol. 37, p. 1619.

    Article  Google Scholar 

  12. Zinchenko, A., Miwa, Y., Lopatina, L.I., Sergeyev, V.G. and Murata, S., DNA Hydrogel as a Template for Synthesis of Ultrasmall Gold Nanoparticles for Catalytic Applications, ACS Appl. Mater. Interface, 2014, V. 6, p. 3226.

    Article  CAS  Google Scholar 

  13. Chen, S.H., Yuan, R., Chai, Y.Q., and Hu, F.X., Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review, Microchim. Acta, 2013, vol. 180, no. 1–2, p. 15.

    Article  CAS  Google Scholar 

  14. Moozarm, N.P., Lorestani, F., Meng, W.P., and Alias, Y., A novel non-enzymatic H2O2 sensor based on polypyrrole nanofibers-silver nanoparticles decorated reduced graphene oxide nano composites, Appl. Surf. Sci., 2015, vol. 332, p. 648.

    Article  Google Scholar 

  15. Krutyakov, Yu.A., Kudrinsky, A.A., Olenin, A.Yu., and Lisichkin, G.V., Synthesis and properties of silver nanoparticles: Achievements and prospects, Russ. Chem. Rev., 2008, vol. 77, no. 3, p. 233.

    Article  CAS  Google Scholar 

  16. Bogle, K.A., Dhole, S.D., and Bhoraskar, V.N., Silver nanoparticles: Synthesis and size control by electron irradiation, Nanotechnology, 2006, vol. 17, p. 3204.

    Article  CAS  Google Scholar 

  17. Guzman, M., Dille, J., and Godet, S., Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria, Nanomed. Nanotech. Biol. Med., 2012, vol. 8, p. 37.

    Article  CAS  Google Scholar 

  18. Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., Park, S.J., Lee, H.J., Kim, H., Park, Y.K., Park, Y.H., Hwang, C.-Y., Kim, Y.-K., Lee, Y.-S., Jeong, D.H., and Cho, M.-H., Antimicrobial effects of silver nanoparticles, Nanomed. Nanotech. Biol. Med., 2007, vol. 3, p. 95.

    Article  CAS  Google Scholar 

  19. Perelshtein, I., Applerot, G., Perkas, N., Guibert, G., Mikhailov, S., and Gedanken, A., Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity, Nanotechnology, 2008, vol. 19, p. 245705.

    Article  Google Scholar 

  20. Mahouche-Chergui, S., Guerrouache, M., Carbonnier, B., and Chehimi, M.M., Polymer-immobilized nanoparticles, Colloids Surf. A, 2013, vol. 439, p. 43.

    Article  CAS  Google Scholar 

  21. Samsonova, M.V., Nanomedicine: Modern Approaches to Diagnosis and Treatment of Diseases, Security Issues, Pulmonologiya, 2008, no. 5, p. 5.

  22. Gholamia, M. and Koivistoc, B., A flexible and highly selective non-enzymatic H2O2 sensor based on silver nanoparticles embedded into Nafion, Appl. Surf. Sci., 2019, vol. 467–468, p. 112.

    Article  Google Scholar 

  23. Wei L. and Chanchan X., Nano-silver used for anti-microbial dressing and preparation method thereof, China Patent 103785857, 2014.

  24. Kolzunova, L., Antibacterial effect and biodegradation of electrosynthesized polymethylolacrylamide films, Polym. Eng. Sci., 2017, vol. 57, p. 716.

    Article  CAS  Google Scholar 

  25. Sosenkova, L.S. and Egorova, E.M., Small-sized silver nanoparticles for studies of biological effects, Russ. J. Phys. Chem., 2011, vol. 85, p. 264.

    Article  CAS  Google Scholar 

  26. Kolzunova, L.G., Kalugina, I.Yu., and Kovarskii, N.Ya., Synthesis of ultrafiltration and reverse-osmosis membranes by electrochemically initiated polymerization of monomers, Russ. J. Appl. Chem., 1996, vol. 69, no. 1, p. 117.

    Google Scholar 

  27. Karpenko, M.A., Kolzunova, L.G., and Karpenko, A.A., Structural and morphological investigation of electrochemically synthesized polyacrylamide ultrafiltration membranes, Russ. J. Electrochem., 2006, vol. 42, p. 89.

    Article  CAS  Google Scholar 

  28. Kolzunova, L.G., Electropolymerization as the Method of Producing Functional Polymer Films and Coatings in Polymer Films. In: Properties, Performance and Applications, Romano, S.A. and Somners, G.P., Eds., Nova Science Publishers, Inc. N.Y., 2012, p. 1–108.

    Google Scholar 

  29. Shchitovskaya, E.V., Rolzunova, L.G., and Burkova, Yu.L., Inclusion of silver particles in the electro-synthesized polyacrylamide matrix, Bull. FEB RAS, 2016, no. 6, p. 63.

  30. Kolzunova, L.G., Shchitovskaya, E.V., and Rodzik, I.G., Formation of hybrid nanocomposites polymethylolacrylamide/Silver, IOP Conf. Series: Mater. Sci. Eng. (PCM-2018), 2018, vol. 369, p. 012018. https://doi.org/10.1088/1757-899X/369/1/012018

  31. GOST 1625–89 (ST SEV 2337–80): Technical Formalin. Specifications, 01.01.1991.

  32. Kolzunova, L.G., Shchitovskaya, E.V., and Karpenko, M.A., Electrochemical one-step synthesis of hybrid nanocomposites Au/polymer, IOP Conf. Series: Mater. Sci. Eng. (PCM-2018), 2018, vol. 369, p. 012027. https://doi.org/10.1088/1757-899X/369/1/012027

  33. Lungu, C.P., Iwasaki, K., Kishi, K., Yamamoto, M., and Tanaka, R., Tribo-ecological coatings prepared by ECR sputtering, Vacuum, 2004, vol. 76, p. 119.

    Article  CAS  Google Scholar 

  34. Ni, K., Chen, L., and Lu G., Synthesis of silver nanowires with different aspect ratios as alcohol-tolerant catalysts for oxygen electroreduction, Electrochem. Commun., 2008, vol. 10, p. 1027.

    Article  CAS  Google Scholar 

  35. Gao, Y., Munroe, N., Kong, X., and Jones, K., Assessing the catalyst processing for low temperature cofired ceramic-based direct methanol fuel cells, J. Power Sources, 2009, vol. 189, p. 935.

    Article  CAS  Google Scholar 

  36. Bryukhanov, V.V., Tikhomirova, N.S., Gorlov, R.V., and Slezhkin, V.A., Interaction of surface plasmons of silver nanoparticles on silochrome and rough silver films with electronically excited adsorbates of rhodamine molecules, Izvestiya KGTU, 2013, no. 6, p. 115.

  37. Durr, M., Obermaier, M., Yasuda, A., and Nelles, G., Adsorption-/desorption-limited diffusion of porphyrin molecules in nano-porous TiO2 networks, Chem. Phys. Lett., 2009, vol. 467, p.358.

    Article  Google Scholar 

  38. Slezhkin, V.A. and Gorlov, R.V., Plasmon resonance in solid silver electrochemical and chemical films and its manifestation in the fluorescence spectra of rhodamine 6G molecules in thin films of polyvinyl alcohol, Izvestiya KGTU, 2011, no. 20, p. 115.

Download references

Funding

The work was carried out under the State Assignment of Institute of Chemistry, Far East Branch of the Russian Academy of Sciences (2017–2019), theme no. 1 and with the partial financial support of the Program of Fundamental Research of the Far East Branch of the Russian Academy of Sciences “Far East,” project no. 18-3-031.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Shchitovskaya or L. G. Kolzunova.

Ethics declarations

The authors declare the absence of any conflict of interest.

Additional information

Translated by M. Ehrenburg

Published on the basis of materials of the XIX All-Russian Conference “Electrochemistry of Organic Compounds” (EKHOS-2018) (with international participation), Novocherkassk, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchitovskaya, E.V., Kolzunova, L.G. & Karpenko, M.A. Electrochemical Immobilization of Silver Nanoparticles in a Polymethylolacryalmide Matrix. Russ J Electrochem 56, 379–387 (2020). https://doi.org/10.1134/S1023193520040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520040114

Keywords:

Navigation